Lie symmetry analysis for fractional evolution equation with ζ-Riemann-Liouville derivative

被引:0
|
作者
Soares, Junior C. A. [1 ,2 ]
Costa, Felix S. [2 ]
Sousa, J. Vanterler C. [2 ]
机构
[1] Mato Grosso State Univ, Dept Math, Rua A S-N, BR-78390000 Barra Do Bugres, Brazil
[2] DEMATI UEMA, PPGEA UEMA, Dept Math, Aerosp Engn, BR-65054 Sao Luis, MA, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 04期
关键词
Prolongation formula; Invariance condition; zeta-Leibniz-type rule; Fractional equations; Lie group; RULE;
D O I
10.1007/s40314-024-02685-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the application of Lie group theory analysis with zeta-Riemann-Liouville fractional derivative (zeta-RLFD, for short) detailing the construction of infinitesimal prolongation to obtain Lie symmetries. In addition, it addresses the invariance condition without necessarily imposing that the lower limit of the fractional integral is fixed. We find an expression that expands the knowledge regarding the study of exact solutions for fractional differential equations. We apply the Leibniz-type rule for the derivative operator in question to build the prolongation. At last, we calculate the Lie symmetries of the generalized Burgers equation and fractional porous medium equation.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Lie Point Symmetry Analysis of the Harry-Dym Type Equation with Riemann-Liouville Fractional Derivative
    Li-zhen Wang
    Ding-jiang Wang
    Shou-feng Shen
    Qing Huang
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 469 - 477
  • [2] Lie Point Symmetry Analysis of the Harry-Dym Type Equation with Riemann-Liouville Fractional Derivative
    Li-zhen WANG
    Ding-jiang WANG
    Shou-feng SHEN
    Qing HUANG
    Acta Mathematicae Applicatae Sinica, 2018, 34 (03) : 469 - 477
  • [3] Lie Point Symmetry Analysis of the Harry-Dym Type Equation with Riemann-Liouville Fractional Derivative
    Wang, Li-zhen
    Wang, Ding-jiang
    Shen, Shou-feng
    Huang, Qing
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (03): : 469 - 477
  • [4] Fractional Ince equation with a Riemann-Liouville fractional derivative
    Parra-Hinojosa, Alfredo
    Gutierrez-Vega, Julio C.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (22) : 10695 - 10705
  • [5] Fractional Langevin equation and Riemann-Liouville fractional derivative
    Kwok Sau Fa
    The European Physical Journal E, 2007, 24 : 139 - 143
  • [6] Lie symmetry scheme to the generalized Korteweg-de Vries equation with Riemann-Liouville fractional derivative
    Liu, Jian-Gen
    Guo, Xiu-Rong
    Gui, Lin-Lin
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024,
  • [7] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19
  • [8] Fractional langevin equation and riemann-liouville fractional derivative
    Fa, Kwok Sau
    EUROPEAN PHYSICAL JOURNAL E, 2007, 24 (02): : 139 - 143
  • [9] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19
  • [10] ON A NONLOCAL FRACTIONAL SOBOLEV EQUATION WITH RIEMANN-LIOUVILLE DERIVATIVE
    Van, Ho Thi Kim
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 13 (03): : 13 - 24