Collaborative Satellite-Terrestrial Edge Computing Network for Everyone-Centric Customized Services

被引:10
作者
Jia, Min [1 ]
Zhang, Liang [1 ]
Wu, Jian [1 ]
Meng, Shiyao [1 ]
Guo, Qing [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
来源
IEEE NETWORK | 2023年 / 37卷 / 05期
基金
中国国家自然科学基金;
关键词
Satellite communications; Collaboration; Edge computing; Low earth orbit satellites; Task analysis; Cloud computing; Energy consumption; Space-air-ground integrated networks; Terrestrial communications; CHALLENGES;
D O I
10.1109/MNET.131.2200375
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The collaborative Satellite-Terrestrial network plays an important role in the future 6G mobile communication network, which can realize the global ubiquitous connection and support everyone-centric customized services. Taking into account the multi-layer heterogeneity of the Satellite-Terrestrial network, Mobile Edge Computing (MEC) technology can provide users with support for various data business computing services. Most of the existing satellite edge computing regards satellites as relay networks and neglects the deployment of MEC servers on satellites. We first propose a collaborative Satellite-Terrestrial edge computing network that deploys edge servers on LEO satellites. Then, we introduce the collaborative Satellite-Terrestrial network architecture and design a central-edge multi-agent collaboration model. Furthermore, it integrates SDN and NFV to achieve optimal control for the collaborative network. Finally, extensive simulations show that the proposed strategy that jointly tasks offloading and resource allocation can achieve higher performance with low complexity.
引用
收藏
页码:197 / 205
页数:9
相关论文
共 50 条
[41]   NSAA: A Network Slice Access Authentication and Service Authorization Scheme for Integrated Satellite-Terrestrial Network [J].
Luo, Yurong ;
Cao, Jin ;
Shang, Chao ;
Ma, Ruhui ;
Niu, Ben ;
Zhang, Yinghui ;
Li, Hui .
IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (06) :7636-7651
[42]   A Collaborative Cache Strategy in Satellite-Ground Integrated Network Based on Multiaccess Edge Computing [J].
Yang, Li ;
Kong, Xiangguang ;
Qi, Yaowen ;
Pan, Chengsheng .
WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
[43]   Joint Optimization of Caching Placement and Power Allocation in Virtualized Satellite-Terrestrial Network [J].
Zhang, Haijun ;
Xu, Jiali ;
Liu, Xiangnan ;
Long, Keping ;
Leung, Victor C. M. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (11) :7932-7943
[44]   Performance Analysis of Mixed FSO/RF System for Satellite-Terrestrial Relay Network [J].
Sun, Qiang ;
Hu, Qi ;
Wu, Yiyang ;
Chen, Xiaomin ;
Zhang, Jiayi ;
Lopez-Benitez, Miguel .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (08) :11378-11393
[45]   Satellite-Terrestrial Assisted Multi-Tier Computing Networks With MIMO Precoding and Computation Optimization [J].
Ding, Changfeng ;
Wang, Jun-Bo ;
Chen, Yijian ;
Yu, Hongkang ;
Cheng, Ming ;
Lin, Min ;
Wang, Jiangzhou .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) :3763-3779
[46]   Collaborative Computation Offloading and Resource Allocation in Satellite Edge Computing [J].
Wang, Ruisong ;
Zhu, Weichen ;
Liu, Gongliang ;
Ma, Ruofei ;
Zhang, Di ;
Mumtaz, Shahid ;
Cherkaoui, Soumaya .
2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, :5625-5630
[47]   Online Optimization of DNN Inference Network Utility in Collaborative Edge Computing [J].
Li, Rui ;
Ouyang, Tao ;
Zeng, Liekang ;
Liao, Guocheng ;
Zhou, Zhi ;
Chen, Xu .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, 32 (05) :4414-4426
[48]   Trajectory Design and Link Selection in UAV-Assisted Hybrid Satellite-Terrestrial Network [J].
Chen, Yu-Jia ;
Chen, Wei ;
Ku, Meng-Lin .
IEEE COMMUNICATIONS LETTERS, 2022, 26 (07) :1643-1647
[49]   When the User-Centric Network Meets Mobile Edge Computing: Challenges and Optimization [J].
Qin, Langtian ;
Lu, Hancheng ;
Wu, Feng .
IEEE COMMUNICATIONS MAGAZINE, 2023, 61 (01) :114-120
[50]   Latency-Energy Efficient Task Offloading in the Satellite Network-Assisted Edge Computing via Deep Reinforcement Learning [J].
Zhou, Jian ;
Liang, Juewen ;
Zhao, Lu ;
Wan, Shaohua ;
Cai, Hui ;
Xiao, Fu .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (04) :2644-2659