Clustering honey samples with unsupervised machine learning methods using FTIR data

被引:1
作者
Avcu, Fatih M. [1 ]
机构
[1] Inonu Univ, Dept Informat, TR-44280 Malatya, Turkiye
来源
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS | 2024年 / 96卷 / 01期
关键词
Fouirer transform infrared spectrophotometer; hierarchical clustering analysis; machine learning; deep Learning; MULTIVARIATE; ORIGIN;
D O I
10.1590/0001-3765202420230409
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study utilizes Fourier transform infrared (FTIR) data from honey samples to cluster and categorize them based on their spectral characteristics. The aim is to group similar samples together, revealing patterns and aiding in classification. The process begins by determining the number of clusters using the elbow method, resulting in five distinct clusters. Principal Component Analysis (PCA) is then applied to reduce the dataset's dimensionality by capturing its significant variances. Hierarchical Cluster Analysis (HCA) further refines the sample clusters. 20% of the data, representing identified clusters, is randomly selected for testing, while the remainder serves as training data for a deep learning algorithm employing a multilayer perceptron (MLP). Following training, the test data are evaluated, revealing an impressive 96.15% accuracy. Accuracy measures the machine learning model's ability to predict class labels for new data accurately. This approach offers reliable honey sample clustering without necessitating extensive preprocessing. Moreover, its swiftness and cost-effectiveness enhance its practicality. Ultimately, by leveraging FTIR spectral data, this method successfully identifies similarities among honey samples, enabling efficient categorization and demonstrating promise in the field of spectral analysis in food science.
引用
收藏
页数:11
相关论文
共 50 条
[41]   UCSL : A Machine Learning Expectation-Maximization Framework for Unsupervised Clustering Driven by Supervised Learning [J].
Louiset, Robin ;
Gori, Pietro ;
Dufumier, Benoit ;
Houenou, Josselin ;
Grigis, Antoine ;
Duchesnay, Edouard .
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, 2021, 12975 :755-771
[42]   Machine Learning Methods for BIM Data [J].
Slusarczyk, Grazyna ;
Strug, Barbara .
INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, PT II, 2022, 13758 :230-240
[43]   Machine learning and statistical methods for clustering single-cell RNA-sequencing data [J].
Petegrosso, Raphael ;
Li, Zhuliu ;
Kuang, Rui .
BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) :1209-1223
[44]   Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets [J].
Korotcov, Alexandru ;
Tkachenko, Valery ;
Russo, Daniel P. ;
Ekins, Sean .
MOLECULAR PHARMACEUTICS, 2017, 14 (12) :4462-4475
[45]   IoT Device Identification Using Unsupervised Machine Learning [J].
Koball, Carson ;
Rimal, Bhaskar P. ;
Wang, Yong ;
Salmen, Tyler ;
Ford, Connor .
INFORMATION, 2023, 14 (06)
[46]   Classifying the clouds of Venus using unsupervised machine learning [J].
Mittendorf, J. ;
Molaverdikhani, K. ;
Ercolano, B. ;
Giovagnoli, A. ;
Grassi, T. .
ASTRONOMY AND COMPUTING, 2024, 49
[47]   Spatial Clustering of Primary Geochemical Halos Using Unsupervised Machine Learning in Sari Gunay Gold Deposit, Iran [J].
Aghahadi, Mohammad Hossein ;
Jozanikohan, Golnaz ;
Asghari, Omid ;
Anvari, Keyumars ;
Hosseini, Sajjad Talesh .
MINING METALLURGY & EXPLORATION, 2024, :2741-2760
[48]   Optimization of machine learning techniques for the determination of clinical parameters in dried human serum samples from FTIR spectroscopic data [J].
Palumbo, Domenico ;
Giorni, Antonio ;
Minocchi, Rossella ;
Amendola, Roberto ;
Guidi, Mariangela Cestelli .
VIBRATIONAL SPECTROSCOPY, 2022, 121
[49]   Binary classification of gynecological cancers based on ATR-FTIR spectroscopy and machine learning using urine samples [J].
Francesco Vigo ;
Alessandra Tozzi ;
Flavio C. Lombardo ;
Muriel Eugster ;
Vasileios Kavvadias ;
Rahel Brogle ;
Julia Rigert ;
Viola Heinzelmann-Schwarz ;
Tilemachos Kavvadias .
Clinical and Experimental Medicine, 25 (1)
[50]   Overview of Machine Learning Methods for Stroke Detection using Weather Data [J].
Ploscar, Andreea Alina ;
Marc, Anastasia-Daria ;
Aldea, Cristina Caterina ;
Coroiu, Adriana Mihaela .
2023 25TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, SYNASC 2023, 2023, :324-331