Predicting heart failure outcomes by integrating breath-by-breath measurements from cardiopulmonary exercise testing and clinical data through a deep learning survival neural network

被引:1
作者
Ross, Heather J. [1 ]
Peikari, Mohammad [1 ]
Vishram-Nielsen, Julie K. K. [1 ]
Fan, Chun-Po S. [1 ]
Hearn, Jason [1 ]
Walker, Mike [1 ]
Crowdy, Edgar [1 ]
Alba, Ana Carolina [1 ]
Manlhiot, Cedric [1 ,2 ]
机构
[1] Univ Toronto, Univ Hlth Network, Ted Rogers Ctr Heart Res, Peter Munk Cardiac Ctr,Dept Med, 200 Elizabeth St, Toronto, ON M5G 2C4, Canada
[2] Johns Hopkins Univ, Johns Hopkins Sch Med, Blalock Taussig Thomas Pediat & Congenital Heart C, Dept Pediat, 1800 Orleans St, Baltimore, MD 21287 USA
来源
EUROPEAN HEART JOURNAL - DIGITAL HEALTH | 2024年 / 5卷 / 03期
关键词
Heart failure; Prognosis; Machine learning; Survival analysis; Exercise testing; AMBULATORY PATIENTS; RISK PREDICTION; MORTALITY; SCORE; MORBIDITY; ASSOCIATION; VALIDATION; COMMITTEE; MODELS;
D O I
10.1093/ehjdh/ztae005
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Mathematical models previously developed to predict outcomes in patients with heart failure (HF) generally have limited performance and have yet to integrate complex data derived from cardiopulmonary exercise testing (CPET), including breath-by-breath data. We aimed to develop and validate a time-to-event prediction model using a deep learning framework using the DeepSurv algorithm to predict outcomes of HF.Methods and results Inception cohort of 2490 adult patients with high-risk cardiac conditions or HF underwent CPET with breath-by-breath measurements. Potential predictive features included known clinical indicators, standard summary statistics from CPETs, and mathematical features extracted from the breath-by-breath time series of 13 measurements. The primary outcome was a composite of death, heart transplant, or mechanical circulatory support treated as a time-to-event outcomes. Predictive features ranked as most important included many of the features engineered from the breath-by-breath data in addition to traditional clinical risk factors. The prediction model showed excellent performance in predicting the composite outcome with an area under the curve of 0.93 in the training and 0.87 in the validation data sets. Both the predicted vs. actual freedom from the composite outcome and the calibration of the prediction model were excellent. Model performance remained stable in multiple subgroups of patients.Conclusion Using a combined deep learning and survival algorithm, integrating breath-by-breath data from CPETs resulted in improved predictive accuracy for long-term (up to 10 years) outcomes in HF. DeepSurv opens the door for future prediction models that are both highly performing and can more fully use the large and complex quantity of data generated during the care of patients with HF. Graphical Abstract
引用
收藏
页码:324 / 334
页数:11
相关论文
共 43 条
  • [1] Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation
    Aaronson, KD
    Schwartz, JS
    Chen, TM
    Wong, KL
    Goin, JE
    Mancini, DM
    [J]. CIRCULATION, 1997, 95 (12) : 2660 - 2667
  • [2] Standardized Definitions for Evaluation of Heart Failure Therapies: Scientific Expert Panel From the Heart Failure Collaboratory and Academic Research Consortium
    Abraham, William T.
    Psotka, Mitchell A.
    Fiuzat, Mona
    Filippatos, Gerasimos
    Lindenfeld, JoAnn
    Mehran, Roxana
    Ambardekar, Amrut V.
    Carson, Peter E.
    Jacob, Richard
    Januzzi, James L., Jr.
    Konstam, Marvin A.
    Krucoff, Mitchell W.
    Lewis, Eldrin F.
    Piccini, Jonathan P.
    Solomon, Scott D.
    Stockbridge, Norman
    Teerlink, John R.
    Unger, Ellis F.
    Zeitler, Emily P.
    Anker, Stefan D.
    O'Connor, Christopher M.
    [J]. JACC-HEART FAILURE, 2020, 8 (12) : 961 - 972
  • [3] Improving risk prediction in heart failure using machine learning
    Adler, Eric D.
    Voors, Adriaan A.
    Klein, Liviu
    Macheret, Fima
    Braun, Oscar O.
    Urey, Marcus A.
    Zhu, Wenhong
    Sama, Iziah
    Tadel, Matevz
    Campagnari, Claudio
    Greenberg, Barry
    Yagil, Avi
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 (01) : 139 - 147
  • [4] Metabolic exercise test data combined with cardiac and kidney indexes, the MECKI score: A multiparametric approach to heart failure prognosis
    Agostoni, Piergiuseppe
    Corra, Ugo
    Cattadori, Gaia
    Veglia, Fabrizio
    La Gioia, Rocco
    Scardovi, Angela B.
    Emdin, Michele
    Metra, Marco
    Sinagra, Gianfranco
    Limongelli, Giuseppe
    Raimondo, Rossella
    Re, Federica
    Guazzi, Marco
    Belardinelli, Romualdo
    Parati, Gianfranco
    Magri, Damiano
    Fiorentini, Cesare
    Mezzani, Alessandro
    Salvioni, Elisabetta
    Scrutinio, Domenico
    Ricci, Renato
    Bettari, Luca
    Di Lenarda, Andrea
    Pastormerlo, Luigi E.
    Pacileo, Giuseppe
    Vaninetti, Raffaella
    Apostolo, Anna
    Iorio, AnnaMaria
    Paolillo, Stefania
    Palermo, Pietro
    Contini, Mauro
    Confalonieri, Marco
    Giannuzzi, Pantaleo
    Passantino, Andrea
    Dei Cas, Livio
    Piepoli, Massimo F.
    Passino, Claudio
    [J]. INTERNATIONAL JOURNAL OF CARDIOLOGY, 2013, 167 (06) : 2710 - 2718
  • [5] Predicting Survival in Patients With Heart Failure With an Implantable Cardioverter Defibrillator: The Heart Failure Meta-Score
    Alba, Ana C.
    Walter, Stephen D.
    Guyatt, Gordon H.
    Levy, Wayne C.
    Fang, Jiming
    Ross, Heather J.
    Lee, Douglas S.
    [J]. JOURNAL OF CARDIAC FAILURE, 2018, 24 (11) : 735 - 745
  • [6] Risk Prediction Models for Mortality in Ambulatory Patients With Heart Failure A Systematic Review
    Alba, Ana C.
    Agoritsas, Thomas
    Jankowski, Milosz
    Courvoisier, Delphine
    Walter, Stephen D.
    Guyatt, Gordon H.
    Ross, Heather J.
    [J]. CIRCULATION-HEART FAILURE, 2013, 6 (05) : 881 - 889
  • [7] The Added Value of Exercise Variables in Heart Failure Prognosis
    Alba, Ana Carolina
    Adamson, Matthew W.
    Macisaac, J.
    Lalonde, Spencer D.
    Chan, Wai S.
    Delgado, Diego Hernan
    Ross, Heather Joan
    [J]. JOURNAL OF CARDIAC FAILURE, 2016, 22 (07) : 492 - 497
  • [8] Use of Risk Models to Predict Death in the Next Year Among Individual Ambulatory Patients With Heart Failure
    Allen, Larry A.
    Matlock, Daniel D.
    Shetterly, Susan M.
    Xu, Stanley
    Levy, Wayne C.
    Portalupi, Laura B.
    McIlvennan, Colleen K.
    Gurwitz, Jerry H.
    Johnson, Eric S.
    Smith, David H.
    Magid, David J.
    [J]. JAMA CARDIOLOGY, 2017, 2 (04) : 435 - 441
  • [9] Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction
    Angraal, Suveen
    Mortazavi, Bobak J.
    Gupta, Aakriti
    Khera, Rohan
    Ahmad, Tariq
    Desai, Nihar R.
    Jacoby, Daniel L.
    Masoudi, Frederick A.
    Spertus, John A.
    Krumholz, Harlan M.
    [J]. JACC-HEART FAILURE, 2020, 8 (01) : 12 - 21
  • [10] [Anonymous], 2001, Popul Bullet UN