High energy storage properties of Nd(Mg2/3Nb1/3)O3 modified Bi0.5Na0.5TiO3 lead-free ceramics

被引:2
|
作者
Pan, Yu [1 ]
Dai, Zhonghua [1 ]
Liu, Chenxi [1 ]
Zhao, Xin [1 ]
Yasui, Shintaro [2 ,3 ]
Cong, Yu [4 ]
Gu, Shuitao [5 ]
机构
[1] Xian Technol Univ, Sch Optoelect Engn, Shaanxi Prov Key Lab Thin Films Technol & Opt Test, Xian 710032, Peoples R China
[2] Tokyo Inst Technol, Inst Innovat Res, Lab Mat & Struct Zero Carbon Energy, Meguro Ku, Tokyo 1528550, Japan
[3] Tokyo Inst Technol, Lab Mat & Struct, Yokohama 2268503, Japan
[4] Univ Paris Saclay, Univ Evry, LMEE, F-91020 Evry, France
[5] Chongqing Univ, Sch Civil Engn, Chongqing 400044, Peoples R China
关键词
ANTIFERROELECTRIC CERAMICS; IMPEDANCE SPECTROSCOPY; DIELECTRIC-PROPERTIES; DENSITY; CAPACITORS; PERFORMANCE; RELAXATION; EFFICIENCY; EVOLUTION; BEHAVIOR;
D O I
10.1007/s10853-024-09440-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study proposes an optimization strategy to improve the energy storage performance of Bi0.5Na0.5TiO3 (BNT)-based ceramics. The strategy is to reduce the grain size, break the long-range polar ordering, form disordered polar nanoregions (PNRs), and increase the breakdown field strength (E-b). The (1-x)Bi0.5Na0.5TiO3-xNd(Mg2/3Nb1/3)O-3 ((1-x)BNT-xNMN, x = 0.05, 0.10, 0.15 and 0.20) ceramics were prepared using this optimization strategy, and an ultrahigh recoverable energy storage density of 2.72 J/cm(3) and an efficiency of 91.74% were obtained. Notably, this marks a several times increase in energy storage density compared to pure BNT ceramics. The energy storage density exhibits excellent electrical stability in the temperature range of 20-160 degrees C and frequency range of 1-200 Hz. Additionally, the power density (P-D) of the ceramic reaches 19.74 MW/cm(3) at an electric field of 180 kV/cm. These findings hold great promise as to pave the way for the development of cutting-edge energy storage solutions and high-performance capacitor materials.
引用
收藏
页码:3284 / 3296
页数:13
相关论文
共 50 条
  • [21] Outstanding Energy Storage Performance of Na0.5Bi0.5TiO3-BaTiO3-(Sr0.85Bi0.1)(Mg1/3Nb2/3)O3 Lead-Free Ceramics
    Cao, Wenjun
    Li, Tianyu
    Chen, Pengfei
    Wang, Chunchang
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (09): : 9362 - 9367
  • [22] Lead-free BaTiO3-Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage
    Yang, Haibo
    Yan, Fei
    Lin, Ying
    Wang, Tong
    Wang, Fen
    Wang, Yilin
    Guo, Lina
    Tai, Wangda
    Wei, Han
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (10) : 3303 - 3311
  • [23] High temperature energy storage properties of Bi0.5Na0.5TiO3 based ceramics modified by NaNbO3
    Wan, Yuhui
    Hou, Ningjing
    Ren, Pengrong
    Ma, Ming
    Song, Kexin
    Yan, Fuxue
    Lu, Xu
    Zhao, Gaoyang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 888
  • [24] Realizing ultra-high energy storage density of lead-free 0.76Bi0.5Na0.5TiO3-0.24SrTiO3-Bi(Ni2/3Nb1/3)O3 ceramics under low electric fields
    Yang, Haibo
    Tian, Jiahao
    Lin, Ying
    Ma, Jiaqi
    CHEMICAL ENGINEERING JOURNAL, 2021, 418
  • [25] Optimized energy storage properties of Bi0.5Na0.5TiO3-based lead-free ceramics by composition regulation
    Li, Chaolong
    Wang, Feng
    Wang, Hao
    Wang, Boying
    Sun, Xinru
    Peng, Xingcan
    Li, Weikun
    Diao, Chunli
    Zheng, Haiwu
    CERAMICS INTERNATIONAL, 2024, 50 (11) : 18454 - 18461
  • [26] Optimized energy storage performance of Bi0.5Na0.5TiO3 ceramic through incorporation of Ca(Nb0.5Al0.5)O3
    Pan, Xingke
    Zhang, Wei
    Shi, Mingqi
    Zhang, Yiran
    Wang, Ting
    Chen, Jianwen
    Pan, Zhongbin
    CERAMICS INTERNATIONAL, 2025, 51 (01) : 1339 - 1345
  • [27] NaNbO3-(Bi0.5La0.5)(Mg2/3Ta1/3)O3 lead-free ceramics achieve ultrafast discharge rate and excellent energy storage performance
    Liu, Chenjiao
    Yang, Haibo
    Hu, Renrui
    Lin, Ying
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (07)
  • [28] Enhancement of energy-storage properties of K0.5Na0.5NbO3 modified Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 lead-free ceramics
    Zhao, Jiefeng
    Cao, Minghe
    Wang, Zhijian
    Xu, Qi
    Zhang, Lin
    Yao, Zhonghua
    Hao, Hua
    Liu, Hanxing
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (01) : 466 - 473
  • [29] Influence of the synthesis route on the electrical and mechanical properties of a modified 0.99 Bi0.5(Na0.8 K0.2)0.5 TiO3-0.01 Bi (Mg2/3Nb1/3) O3 lead-free ceramics
    Tawee, Lalita
    Boothrawong, Narongdetch
    Wadthanakul, Jetsada
    Randorn, Chamnan
    Rujijanagul, Gobwute
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2025,
  • [30] Enhanced electrical energy storage performance under low electric fields in Bi(Mg2/3Nb1/3)O3-modified 0.76Bi0.5Na0.5TiO3-0.24SiTiO3 ceramics
    Wang, Huan
    Liu, Hongbo
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (07)