Complete bipartite graphs without small rainbow subgraphs

被引:0
|
作者
Ma, Zhiqiang [1 ]
Mao, Yaping [2 ]
Schiermeyer, Ingo [3 ]
Wei, Meiqin [4 ]
机构
[1] Qinghai Normal Univ, Sch Math & Statistis, Xining 810008, Qinghai, Peoples R China
[2] Qinghai Normal Univ, Acad Plateau Sci & Sustainabil, Xining 810008, Qinghai, Peoples R China
[3] Tech Univ, Inst Diskrete Math & Algebra, Bergakad Freiberg, D-09596 Freiberg, Germany
[4] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramsey theory; Matching; Bipartite Gallai-Ramsey number; Bipartite graph; RAMSEY NUMBERS;
D O I
10.1016/j.dam.2023.12.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by bipartite Gallai-Ramsey type problems, we consider edge-colorings of complete bipartite graphs without rainbow tree and matching. Given two graphs G and H, and a positive integer k, define the bipartite Gallai-Ramsey number bgr(k)(G : H) as the minimum number of vertices n such that n(2) >= k and for every N >= n, any coloring (using all k colors) of the complete bipartite graph KN,N contains a rainbow copy of G or a monochromatic copy of H. In this paper, we first describe the structures of a complete bipartite graph K-n,K-n without rainbow P-4(+) and 3K(2), respectively, where P-4(+) is the graph consisting of a P-4 with one extra edge incident with an interior vertex. Furthermore, we determine the exact values or upper and lower bounds on bgr(k)(G : H) when G is a 3-matching or a 4-path or P-4(+), and H is a bipartite graph. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 262
页数:15
相关论文
共 50 条
  • [31] On the largest eigenvalues of bipartite graphs which are nearly complete
    Chen, Yi-Fan
    Fu, Hung-Lin
    Kim, In-Jae
    Stehr, Eryn
    Watts, Brendon
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (2-3) : 606 - 614
  • [32] The terminal-pairability problem in complete bipartite graphs
    Lv, Zequn
    Lu, Mei
    DISCRETE APPLIED MATHEMATICS, 2021, 291 : 64 - 67
  • [33] A note on acyclic edge coloring of complete bipartite graphs
    Basavaraju, Manu
    Chandran, L. Sunil
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4646 - 4648
  • [34] On the spectral radius of bipartite graphs which are nearly complete
    Kinkar Chandra Das
    Ismail Naci Cangul
    Ayse Dilek Maden
    Ahmet Sinan Cevik
    Journal of Inequalities and Applications, 2013
  • [35] Local colourings and monochromatic partitions in complete bipartite graphs
    Lang, Richard
    Stein, Maya
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 60 : 42 - 54
  • [36] KI,pk-factorization of complete bipartite graphs
    Du B.
    Applied Mathematics-A Journal of Chinese Universities, 2001, 16 (2) : 107 - 110
  • [37] On the spectral radius of bipartite graphs which are nearly complete
    Das, Kinkar Chandra
    Cangul, Ismail Naci
    Maden, Ayse Dilek
    Cevik, Ahmet Sinan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [38] Bipartite graphs with small third Laplacian eigenvalue
    Zhang, XD
    DISCRETE MATHEMATICS, 2004, 278 (1-3) : 241 - 253
  • [39] Finding bipartite subgraphs efficiently
    Mubayi, Dhruv
    Turan, Gyoergy
    INFORMATION PROCESSING LETTERS, 2010, 110 (05) : 174 - 177
  • [40] Note on the complexity of deciding the rainbow (vertex-) connectedness for bipartite graphs
    Li, Shasha
    Li, Xueliang
    Shi, Yongtang
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 : 155 - 161