共 50 条
Complete bipartite graphs without small rainbow subgraphs
被引:0
|作者:
Ma, Zhiqiang
[1
]
Mao, Yaping
[2
]
Schiermeyer, Ingo
[3
]
Wei, Meiqin
[4
]
机构:
[1] Qinghai Normal Univ, Sch Math & Statistis, Xining 810008, Qinghai, Peoples R China
[2] Qinghai Normal Univ, Acad Plateau Sci & Sustainabil, Xining 810008, Qinghai, Peoples R China
[3] Tech Univ, Inst Diskrete Math & Algebra, Bergakad Freiberg, D-09596 Freiberg, Germany
[4] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Ramsey theory;
Matching;
Bipartite Gallai-Ramsey number;
Bipartite graph;
RAMSEY NUMBERS;
D O I:
10.1016/j.dam.2023.12.020
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Motivated by bipartite Gallai-Ramsey type problems, we consider edge-colorings of complete bipartite graphs without rainbow tree and matching. Given two graphs G and H, and a positive integer k, define the bipartite Gallai-Ramsey number bgr(k)(G : H) as the minimum number of vertices n such that n(2) >= k and for every N >= n, any coloring (using all k colors) of the complete bipartite graph KN,N contains a rainbow copy of G or a monochromatic copy of H. In this paper, we first describe the structures of a complete bipartite graph K-n,K-n without rainbow P-4(+) and 3K(2), respectively, where P-4(+) is the graph consisting of a P-4 with one extra edge incident with an interior vertex. Furthermore, we determine the exact values or upper and lower bounds on bgr(k)(G : H) when G is a 3-matching or a 4-path or P-4(+), and H is a bipartite graph. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 262
页数:15
相关论文