Complete bipartite graphs without small rainbow subgraphs

被引:0
|
作者
Ma, Zhiqiang [1 ]
Mao, Yaping [2 ]
Schiermeyer, Ingo [3 ]
Wei, Meiqin [4 ]
机构
[1] Qinghai Normal Univ, Sch Math & Statistis, Xining 810008, Qinghai, Peoples R China
[2] Qinghai Normal Univ, Acad Plateau Sci & Sustainabil, Xining 810008, Qinghai, Peoples R China
[3] Tech Univ, Inst Diskrete Math & Algebra, Bergakad Freiberg, D-09596 Freiberg, Germany
[4] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramsey theory; Matching; Bipartite Gallai-Ramsey number; Bipartite graph; RAMSEY NUMBERS;
D O I
10.1016/j.dam.2023.12.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by bipartite Gallai-Ramsey type problems, we consider edge-colorings of complete bipartite graphs without rainbow tree and matching. Given two graphs G and H, and a positive integer k, define the bipartite Gallai-Ramsey number bgr(k)(G : H) as the minimum number of vertices n such that n(2) >= k and for every N >= n, any coloring (using all k colors) of the complete bipartite graph KN,N contains a rainbow copy of G or a monochromatic copy of H. In this paper, we first describe the structures of a complete bipartite graph K-n,K-n without rainbow P-4(+) and 3K(2), respectively, where P-4(+) is the graph consisting of a P-4 with one extra edge incident with an interior vertex. Furthermore, we determine the exact values or upper and lower bounds on bgr(k)(G : H) when G is a 3-matching or a 4-path or P-4(+), and H is a bipartite graph. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 262
页数:15
相关论文
共 50 条
  • [1] Complete bipartite graphs without small rainbow stars
    Chen, Weizhen
    Ji, Meng
    Mao, Yaping
    Wei, Meiqin
    DISCRETE APPLIED MATHEMATICS, 2023, 340 : 14 - 20
  • [2] Complete graphs and complete bipartite graphs without rainbow path
    Li, Xihe
    Wang, Ligong
    Liu, Xiangxiang
    DISCRETE MATHEMATICS, 2019, 342 (07) : 2116 - 2126
  • [3] Bipartite subgraphs of graphs with maximum degree three
    Bylka, SA
    Idzik, A
    Komar, J
    GRAPHS AND COMBINATORICS, 1999, 15 (02) : 129 - 136
  • [4] On vertex-disjoint complete bipartite subgraphs in a bipartite graph
    Wang, H
    GRAPHS AND COMBINATORICS, 1999, 15 (03) : 353 - 364
  • [5] Partitioning the vertex set of a bipartite graph into complete bipartite subgraphs
    Duginov, Oleg
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2014, 16 (03): : 203 - 214
  • [6] Packing bipartite graphs with covers of complete bipartite graphs
    Chalopin, Jeremie
    Paulusma, Daniel
    DISCRETE APPLIED MATHEMATICS, 2014, 168 : 40 - 50
  • [7] On Vertex-Disjoint Complete Bipartite Subgraphs in a Bipartite Graph
    Hong Wang
    Graphs and Combinatorics, 1999, 15 : 353 - 364
  • [8] Complete graphs with no rainbow tree
    Schlage-Puchta, Jan-Christoph
    Wagner, Peter
    JOURNAL OF GRAPH THEORY, 2020, 93 (02) : 157 - 167
  • [9] GALLAI-RAMSEY NUMBERS FOR RAINBOW TREES AND MONOCHROMATIC COMPLETE BIPARTITE GRAPHS
    Li, Luyi
    Li, Xueliang
    Mao, Yaping
    Si, Yuan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [10] On bipartite graphs with complete bipartite star complements
    Rowlinson, Peter
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 : 149 - 160