Innovative Approaches to 3D Printing of PA12 Forearm Orthoses: A Comprehensive Analysis of Mechanical Properties and Production Efficiency

被引:4
作者
Zakrecki, Andrzej [1 ,2 ]
Cieslik, Jacek [1 ]
Bazan, Anna [3 ]
Turek, Pawel [3 ]
机构
[1] AGH Univ Sci & Technol Cracow, Fac Mech Engn & Robot, Dept Mfg Syst, PL-30059 Krakow, Poland
[2] Mediprintic Sp Zoo, PL-39300 Mielec, Poland
[3] Rzeszow Univ Technol, Fac Mech Engn & Aeronaut, Dept Mfg Tech & Automat, PL-35959 Rzeszow, Poland
关键词
additive manufacturing; 3D printing; forearm orthosis; polyamide powders; PA12; mechanical properties; SLS; HP MJF; production capacity; MULTI JET FUSION; DESIGN; PERFORMANCE; FAILURE; MODEL;
D O I
10.3390/ma17030663
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This research paper aims to explore the mechanical characteristics of polyamide PA12 (PA12) as a 3D material printed utilizing Selective Laser Sintering (SLS) and HP MultiJet Fusion (HP MJF) technologies in order to design and manufacture forearm orthoses. The study assessed the flowability of the materials used and compared the mechanical performance of PA12 with each other using tensile, flexure, and impact tests in five different fabrication orientations: X, Y, Z, tilted 45 degrees XZ, and tilted 45 degrees YZ. The results of the study provide, firstly-the data for testing the quality of the applied polyamide powder blend and, secondly-the data for the design of the orthosis geometry from the aspect of its strength parameters and the safety of construction. The mechanical parameters of SLS specimens had less variation than MJF specimens in a given orientation. The difference in tensile strength between the 3D printing technologies tested was 1.8%, and flexural strength was 4.7%. A process analysis of the forearm orthoses revealed that the HP MJF 5200 system had a higher weekly production capacity than the EOS P396 in a production variance based on obtaining maximum strength parameters and a variance based on maximizing economic efficiency. The results suggest that medical device manufacturers can use additive manufacturing technologies to produce prototypes and small-batch parts for medical applications. This paper pioneers using 3D printing technology with Powder Bed Fusion (PBF) methods in designing and manufacturing forearm orthoses as a low- to medium-volume product. The applied solution addresses the problem of medical device manufacturers with regard to the analysis of production costs and mechanical properties when using 3D printing for certified medical devices.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Determination of mechanical properties of materials used for 3D printing
    Sedlak J.
    Chladil J.
    Cerny M.
    Polzer A.
    Varhanik M.
    Dobrocky D.
    Joska Z.
    Pokorny Z.
    1600, J. E. Purkyne University in Usti nad Labem (20): : 190 - 194
  • [22] Determination of Mechanical Properties of Materials Used for 3D Printing
    Sedlak, Josef
    Chladil, Josef
    Cerny, Martin
    Polzer, Ales
    Varhanik, Matus
    Dobrocky, David
    Joska, Zdenek
    Pokorny, Zdenek
    MANUFACTURING TECHNOLOGY, 2020, 20 (02): : 237 - 243
  • [23] Comparison of mechanical properties of different 3D printing technologies
    Awutsadaporn Katheng
    Wisarut Prawatvatchara
    Patcharanun Chaiamornsup
    Tanapon Sornsuwan
    Hathairat Lekatana
    Jadesada Palasuk
    Scientific Reports, 15 (1)
  • [24] 3D Printing of polymer composites with material jetting: Mechanical and fractographic analysis
    Tee, Yun Lu
    Tran, Phuong
    Leary, Martin
    Pille, Philip
    Brandt, Milan
    ADDITIVE MANUFACTURING, 2020, 36 (36)
  • [25] Rheological and mechanical properties of edible gel materials for 3D food printing technology
    Rahman, Julkarnyne M. Habibur
    Shiblee, Md Nahin Islam
    Ahmed, Kumkum
    Khosla, Ajit
    Kawakami, Masaru
    Furukawa, Hidemitsu
    HELIYON, 2020, 6 (12)
  • [26] Experimental investigation of mechanical properties of UV-Curable 3D printing materials
    Hong, Sung Yong
    Kim, Ye Chan
    Wang, Mei
    Kim, Hyung-Ick
    Byun, Do-Young
    Nam, Jae-Do
    Chou, Tsu-Wei
    Ajayan, Pulickel M.
    Ci, Lijie
    Suhr, Jonghwan
    POLYMER, 2018, 145 : 88 - 94
  • [27] Effects of printing parameters on the mechanical properties of sand molds produced by a novel binder jetting 3D printer
    Aslan, Ibrahim
    Can, Ahmet
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (04) : 2939 - 2950
  • [28] Determination of Mechanical Properties of Plastic Components Made by 3D Printing
    Sedlak, Josef
    Joska, Zdenek
    Hrbackova, Lucie
    Jurickova, Eva
    Hrusecka, Denisa
    Horak, Ondrej
    MANUFACTURING TECHNOLOGY, 2022, 22 (06): : 733 - 746
  • [29] STUDY OF THE INFLUENCE OF 3D PRINTING PARAMETERS ON THE MECHANICAL PROPERTIES OF PLA
    Fernandes, Joao
    Deus, Augusto M.
    Reis, Luis
    Vaz, Maria Fatima
    Leite, Marco
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING, 2018, : 547 - 552
  • [30] Influence of Internal Innovative Architecture on the Mechanical Properties of 3D Polymer Printed Parts
    Pop, Mihai Alin
    Croitoru, Catalin
    Bedo, Tibor
    Geaman, Virgil
    Radomir, Irinel
    Zaharia, Sebastian Marian
    Chicos, Lucia Antoaneta
    POLYMERS, 2020, 12 (05)