Machine learning-based classifiers to predict metastasis in colorectal cancer patients

被引:3
|
作者
Talebi, Raheleh [1 ,2 ]
Celis-Morales, Carlos A. [3 ,4 ]
Akbari, Abolfazl [5 ]
Talebi, Atefeh [5 ,6 ]
Borumandnia, Nasrin [7 ]
Pourhoseingholi, Mohamad Amin [8 ]
机构
[1] Univ Appl Sci & Technol, Dept Pure Math, Unit 10, Tehran, Iran
[2] Univ Appl Sci & Technol, Math Architecture & Comp Engn Dept, Unit 10, Tehran, Iran
[3] Univ Glasgow, Sch Cardiovasc & Metab Hlth, Glasgow, Scotland
[4] Univ Catolica Maule, Human Performance Lab, Educ Phys Act & Hlth Res Unit, Talca, Chile
[5] Iran Univ Med Sci, Colorectal Res Ctr, Tehran, Iran
[6] Univ Glasgow, British Heart Fdn, Cardiovasc Res Ctr, Glasgow, Scotland
[7] Shahid Beheshti Univ Med Sci, Urol & Nephrol Res Ctr, Tehran, Iran
[8] Shahid Beheshti Univ Med Sci, Res Inst Gastroenterol & Liver Dis, Gastroenterol & Liver Dis Res Ctr, Tehran, Iran
来源
FRONTIERS IN ARTIFICIAL INTELLIGENCE | 2024年 / 7卷
关键词
colorectal cancer; machine learning; metastasis; model performance and validation; balance data; MODEL;
D O I
10.3389/frai.2024.1285037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background The increasing prevalence of colorectal cancer (CRC) in Iran over the past three decades has made it a key public health burden. This study aimed to predict metastasis in CRC patients using machine learning (ML) approaches in terms of demographic and clinical factors.Methods This study focuses on 1,127 CRC patients who underwent appropriate treatments at Taleghani Hospital, a tertiary care facility. The patients were divided into training and test datasets in an 80:20 ratio. Various ML methods, including Naive Bayes (NB), random rorest (RF), support vector machine (SVM), neural network (NN), decision tree (DT), and logistic regression (LR), were used for predicting metastasis in CRC patients. Model performance was evaluated using 5-fold cross-validation, reporting sensitivity, specificity, the area under the curve (AUC), and other indexes.Results Among the 1,127 patients, 183 (16%) had experienced metastasis. In the predictionof metastasis, both the NN and RF algorithms had the highest AUC, while SVM ranked third in both the original and balanced datasets. The NN and RF algorithms achieved the highest AUC (100%), sensitivity (100% and 100%, respectively), and accuracy (99.2% and 99.3%, respectively) on the balanced dataset, followed by the SVM with an AUC of 98.8%, a sensitivity of 97.5%, and an accuracy of 97%. Moreover, lower false negative rate (FNR), false positive rate (FPR), and higher negative predictive value (NPV) can be confirmed by these two methods. The results also showed that all methods exhibited good performance in the test datasets, and the balanced dataset improved the performance of most ML methods. The most important variables for predicting metastasis were the tumor stage, the number of involved lymph nodes, and the treatment type. In a separate analysis of patients with tumor stages I-III, it was identified that tumor grade, tumor size, and tumor stage are the most important features.Conclusion This study indicated that NN and RF were the best among ML-based approaches for predicting metastasis in CRC patients. Both the tumor stage and the number of involved lymph nodes were considered the most important features.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Machine learning-based prediction model for distant metastasis of breast cancer
    Duan, Hao
    Zhang, Yu
    Qiu, Haoye
    Fu, Xiuhao
    Liu, Chunling
    Zang, Xiaofeng
    Xu, Anqi
    Wu, Ziyue
    Li, Xingfeng
    Zhang, Qingchen
    Zhang, Zilong
    Cui, Feifei
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [22] Prognostication of colorectal cancer liver metastasis by CE-based radiomics and machine learning
    Luo, Xijun
    Deng, Hui
    Xie, Fei
    Wang, Liyan
    Liang, Junjie
    Zhu, Xianjun
    Li, Tao
    Tang, Xingkui
    Liang, Weixiong
    Xiang, Zhiming
    He, Jialin
    TRANSLATIONAL ONCOLOGY, 2024, 47
  • [23] Machine Learning-based Analysis of Rectal Cancer MRI Radiomics for Prediction of Metachronous Liver Metastasis
    Liang, Meng
    Cai, Zhengting
    Zhang, Hongmei
    Huang, Chencui
    Meng, Yankai
    Zhao, Li
    Li, Dengfeng
    Ma, Xiaohong
    Zhao, Xinming
    ACADEMIC RADIOLOGY, 2019, 26 (11) : 1495 - 1504
  • [24] Machine Learning-based Classifiers for the Prediction of Low Birth Weight
    Arayeshgari, Mahya
    Najafi-Ghobadi, Somayeh
    Tarhsaz, Hosein
    Parami, Sharareh
    Tapak, Leili
    HEALTHCARE INFORMATICS RESEARCH, 2023, 29 (01) : 54 - 63
  • [25] The impact of dietary fiber on colorectal cancer patients based on machine learning
    Ji, Xinwei
    Wang, Lixin
    Luan, Pengbo
    Liang, Jingru
    Cheng, Weicai
    FRONTIERS IN NUTRITION, 2025, 12
  • [26] Machine learning-based dynamic prediction of lateral lymph node metastasis in patients with papillary thyroid cancer
    Lai, Sheng-wei
    Fan, Yun-long
    Zhu, Yu-hua
    Zhang, Fei
    Guo, Zheng
    Wang, Bing
    Wan, Zheng
    Liu, Pei-lin
    Yu, Ning
    Qin, Han-dai
    FRONTIERS IN ENDOCRINOLOGY, 2022, 13
  • [27] WGCNA and Machine Learning-Based Integrative Bioinformatics Analysis for Identifying Key Genes of Colorectal Cancer
    Al Mehedi Hasan, Md.
    Maniruzzaman, Md.
    Shin, Jungpil
    IEEE ACCESS, 2024, 12 : 144350 - 144363
  • [28] Machine learning-based identification of proteomic markers in colorectal cancer using UK Biobank data
    Radhakrishnan, Swarnima Kollampallath
    Nath, Dipanwita
    Russ, Dominic
    Merodio, Laura Bravo
    Lad, Priyani
    Daisi, Folakemi Kola
    Acharjee, Animesh
    FRONTIERS IN ONCOLOGY, 2025, 14
  • [29] Developing a Novel Machine Learning-Based Classification Scheme for Predicting SPCs in Colorectal Cancer Survivors
    Ting, Wen-Chien
    Chang, Horng-Rong
    Chang, Chi-Chang
    Lu, Chi-Jie
    APPLIED SCIENCES-BASEL, 2020, 10 (04):
  • [30] A machine learning-based approach to predict the velocity profiles in small streams
    Genc, Onur
    Dag, Ali
    WATER RESOURCES MANAGEMENT, 2016, 30 (01) : 43 - 61