Energy equality of weak solutions of the Navier-Stokes-Fourier equations allowing vacuum

被引:0
作者
Ji, Xiang [1 ]
Wang, Shu [2 ]
Zhang, Jie [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Full Navier-Stokes equations; Energy equality; Weak solutions; Vacuum; ONSAGERS CONJECTURE; COMPRESSIBLE EULER; CONSERVATION; EXISTENCE;
D O I
10.1016/j.nonrwa.2024.104065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the conservation of energy criterion of the weak solutions to the Navier-Stokes-Fourier equations on the torus allowing vacuum. We establish the energy conservation criteria via the gradient of velocity for the weak solutions of this system, which generalizes the corresponding recent energy conservation criteria in terms of the velocity obtained by Aoki and Iwabuchi in Aoki and Iwabuchi (2022). Moreover, sufficient conditions for weak solutions keeping the energy balance allowing vacuum are shown for the full Navier-Stokes equations.
引用
收藏
页数:17
相关论文
共 37 条
  • [1] ENERGY CONSERVATION FOR THE COMPRESSIBLE EULER AND NAVIER-STOKES EQUATIONS WITH VACUUM
    Akramov, Ibrokhimbek
    Debiec, Tomasz
    Skipper, Jack
    Wiedemann, Emil
    [J]. ANALYSIS & PDE, 2020, 13 (03): : 789 - 811
  • [2] Albritton D, 2023, Arxiv, DOI arXiv:2112.04943
  • [3] Energy conservation law for weak solutions of the full compressible Navier-Stokes equations
    Aoki, Motofumi
    Iwabuchi, Tsukasa
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 341 : 481 - 503
  • [4] Onsager's Conjecture for the Incompressible Euler Equations in Bounded Domains
    Bardos, Claude
    Titi, Edriss S.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 228 (01) : 197 - 207
  • [5] On the energy equality for the 3D Navier-Stokes equations
    Berselli, Luigi C.
    Chiodaroli, Elisabetta
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192
  • [6] Convex integration and phenomenologies in turbulence
    Buckmaster, Tristan
    Vicol, Vlad
    [J]. EMS SURVEYS IN MATHEMATICAL SCIENCES, 2019, 6 (1-2) : 173 - 263
  • [7] Onsager's Conjecture for Admissible Weak Solutions
    Buckmaster, Tristan
    De Lellis, Camillo
    Szekelyhidi, Laszlo, Jr.
    Vicol, Vlad
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (02) : 229 - 274
  • [8] ENERGY EQUALITY IN COMPRESSIBLE FLUIDS WITH PHYSICAL BOUNDARIES
    Chen, Ming
    Liang, Zhilei
    Wang, Dehua
    Xu, Runzhang
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 1363 - 1385
  • [9] Onsager's energy conservation for inhomogeneous Euler equations
    Chen, Robin Ming
    Yu, Cheng
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 131 : 1 - 16
  • [10] Energy conservation and Onsager's conjecture for the Euler equations
    Cheskidov, A.
    Constantin, P.
    Friedlander, S.
    Shvydkoy, R.
    [J]. NONLINEARITY, 2008, 21 (06) : 1233 - 1252