Limit cycles in an m-piecewise discontinuous polynomial differential system

被引:1
作者
Jiang, Ziguo [1 ,2 ]
机构
[1] Aba Teachers Univ, Sch Math, Wenchuan 623002, Sichuan, Peoples R China
[2] Aba Teachers Univ, Computat Math & Appl Stat Lab, Wenchuan 623002, Sichuan, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 02期
关键词
limit cycle; piecewise differential equation; averaging method; CUBIC SYSTEM; BIFURCATION;
D O I
10.3934/math.2024177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, I study a planar m-piecewise discontinuous polynomial differential system x = y, y = -x - epsilon(f(x,y) + gm(x, y)h(x)), which has a linear center in each zone partitioned by those switching lines, where f(x, y) = Zni+j=0 ai jxiyj , h(x) = Zlj=0 bjxj, ai j ,bj is an element of R, n, l is an element of N, and gm(x, y) with the positive even number m as the union of m/2 different straight lines passing through the origin of coordinates dividing the plane into sectors of angle 2 pi/m. Using the averaging theory, I provide the lower bound Lm(n, l) for the maximun number of limit cycles, which bifurcates which bifurcating from the annulus of the origin of this system.
引用
收藏
页码:3613 / 3629
页数:17
相关论文
共 30 条
  • [1] Andronov A. A., 1966, THEORY OSCILLATORS
  • [2] Berezin I. S., 1965, Computing methods, DOI [10.1016/C2013-0-01726-4, DOI 10.1016/C2013-0-01726-4]
  • [3] PIECEWISE LINEAR PERTURBATIONS OF A LINEAR CENTER
    Buzzi, Claudio
    Pessoa, Claudio
    Torregrosa, Joan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (09) : 3915 - 3936
  • [4] Simultaneous occurrence of sliding and crossing limit cycles in piecewise linear planar vector fields
    Cardoso, Joao L.
    Llibre, Jaume
    Novaes, Douglas D.
    Tonon, Durval J.
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2020, 35 (03): : 490 - 514
  • [5] Uniform upper bound for the number of limit cycles of planar piecewise linear differential systems with two zones separated by a straight line
    Carmona, Victoriano
    Fernandez-Sanchez, Fernando
    Novaes, Douglas D.
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 137
  • [6] AVERAGING APPROACH TO CYCLICITY OF HOPF BIFURCATION IN PLANAR LINEAR-QUADRATIC POLYNOMIAL DISCONTINUOUS DIFFERENTIAL SYSTEMS
    Chen, Xingwu
    Llibre, Jaume
    Zhang, Weinian
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (10): : 3953 - 3965
  • [7] Degenerate Hopf bifurcations in a family of FF-type switching systems
    Chen, Xingwu
    Romanoyski, Valery G.
    Zhang, Weinian
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (02) : 1058 - 1076
  • [8] Coll B, 2005, DYNAM CONT DIS SER A, V12, P275
  • [9] Degenerate Hopf bifurcations in discontinuous planar systems
    Coll, B
    Gasull, A
    Prohens, R
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 253 (02) : 671 - 690
  • [10] De Abreu TMP, 2023, Arxiv, DOI [arXiv:2307.09599, 10.48550/arXiv.2307.09599, DOI 10.48550/ARXIV.2307.09599]