Constructing host-guest recognition electrolytes promotes the Li+ kinetics in solid-state batteries

被引:20
|
作者
Liu, Qing [1 ]
Yang, Li [1 ]
Mei, Zhiyuan [1 ]
An, Qi [1 ]
Zeng, Kun [1 ]
Huang, Wenjing [1 ]
Wang, Shimin [1 ]
Sun, Yongjiang [1 ]
Guo, Hong [1 ,2 ]
机构
[1] Yunnan Univ, Int Joint Res Ctr Adv Energy Mat Yunnan Prov, Sch Mat & Energy, Yunnan Key Lab Carbon Neutral & Green Low carbon T, Kunming 650091, Peoples R China
[2] Southwest United Grad Sch, Kunming 650091, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrodes - Ions - Iron compounds - Kinetics - Lithium-ion batteries - Manganese compounds - Nickel compounds - Polyelectrolytes - Solid electrolytes - Solid state devices - Solid-State Batteries;
D O I
10.1039/d3ee03283c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Owing to their good interfacial contact with electrodes, solid polymer electrolytes (SPEs) are believed to be a promising candidate for solid-state batteries. However, the inferior kinetics of SPEs, which are caused by their lower Li+ conductivity and narrower electrochemical window, have severely hindered their applications. Here, a novel host-guest recognition gel polymer electrolyte (GPE) strategy is proposed and further combined with in situ polymerization technology to construct a MOFs-GPE system. Innovatively, Ti-MOFs with synergetic various sites serve as a "host" platform for the GPE to tune the electrolyte properties; they not only act as a highly effective accelerator for Li+ ion conduction, but also afford favorable properties in terms of mechanical strength and withstanding high voltage. The MOFs-GPE system enables the stable operation of state-of-the-art cathodes LiFePO4 and high-voltage LiNi0.9Co0.05Mn0.05O2. The as-assembled LiNi0.9Co0.05Mn0.05O2|G@MOFs (Ti)|graphite full battery demonstrates a good cycling stability with 71.4% capacity retention after 250 cycles at room temperature. In situ measurements and DFT calculations reveal that the transport kinetics of the Li+ ions in the composite electrolyte can be accelerated by the introduced MOF host. This work provides significant guidance for improving ion transport in host-guest recognition SPEs and an understanding of the potential Li+ kinetics mechanisms.
引用
收藏
页码:780 / 790
页数:11
相关论文
共 50 条
  • [41] A Minireview of the Solid-State Electrolytes for Zinc Batteries
    Yao, Wangbing
    Zheng, Zhuoyuan
    Zhou, Jie
    Liu, Dongming
    Song, Jinbao
    Zhu, Yusong
    POLYMERS, 2023, 15 (20)
  • [42] Fundamentals of inorganic solid-state electrolytes for batteries
    Famprikis, Theodosios
    Canepa, Pieremanuele
    Dawson, James A.
    Islam, M. Saiful
    Masquelier, Christian
    NATURE MATERIALS, 2019, 18 (12) : 1278 - 1291
  • [43] Fundamentals of inorganic solid-state electrolytes for batteries
    Theodosios Famprikis
    Pieremanuele Canepa
    James A. Dawson
    M. Saiful Islam
    Christian Masquelier
    Nature Materials, 2019, 18 : 1278 - 1291
  • [44] Advanced Polymer Electrolytes in Solid-State Batteries
    Ningappa, Ningaraju Gejjiganahalli
    Madikere Raghunatha Reddy, Anil Kumar
    Zaghib, Karim
    Batteries, 2024, 10 (12)
  • [45] Solid-State Electrolytes for Sodium Metal Batteries
    Li, Zhaopeng
    Liu, Pei
    Zhu, Kunjie
    Zhang, Zhaoyuan
    Si, Yuchang
    Wang, Yijing
    Jiao, Lifang
    ENERGY & FUELS, 2021, 35 (11) : 9063 - 9079
  • [46] Halide Solid-State Electrolytes: Stability and Application for High Voltage All-Solid-State Li Batteries
    Nikodimos, Yosef
    Su, Wei-Nien
    Hwang, Bing Joe
    ADVANCED ENERGY MATERIALS, 2023, 13 (03)
  • [47] High Li+ Conductivity of Li1.3+xAl0.3-xMgxTi1.7(PO4)3 with Hybrid Solid Electrolytes for Solid-State Lithium Batteries
    Kim, Haena
    Shaik, Mahammad Rafi
    Kim, Sukju
    Park, Yong Min
    Jeon, Dong Won
    Cho, Sung Beom
    Choi, Sungho
    Im, Won Bin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2024, 2024
  • [48] Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries
    Liang, Jianneng
    Luo, Jing
    Sun, Qian
    Yang, Xiaofei
    Li, Ruying
    Sun, Xueliang
    ENERGY STORAGE MATERIALS, 2019, 21 : 308 - 334
  • [49] Solid-State Electrolytes and Their Interfacial Properties: Implications for Solid-State Lithium Batteries
    Seul-Yi Lee
    Jishu Rawal
    Jieun Lee
    Jagadis Gautam
    Seok Kim
    Gui-Liang Xu
    Khalil Amine
    Soo-Jin Park
    Electrochemical Energy Reviews, 2025, 8 (1)
  • [50] Constructing an interface compatible Li anode in organic electrolyte for solid-state lithium batteries
    Sun, Xiaolin
    Niu, Quanhai
    Song, Depeng
    Sun, Shimei
    Li, Minmin
    Ohsaka, Takeo
    Matsumoto, Futoshi
    Wu, Jianfei
    JOURNAL OF ENERGY STORAGE, 2020, 27 (27)