Feature-Based Bearing Fault Classification Using Taylor-Fourier Transform

被引:0
|
作者
Avalos-Almazan, Gerardo [1 ]
Aguayo-Tapia, Sarahi [1 ]
Rangel-Magdaleno, Jose de Jesus [1 ]
Arrieta-Paternina, Mario R. [2 ]
机构
[1] Natl Inst Astrophys Opt & Elect, Digital Syst Grp, Puebla 72840, Mexico
[2] Univ Nacl Autonoma Mexico, Dept Elect Engn, Mexico City, Mexico
关键词
bearing damage; discrete-time Taylor-Fourier transform; fault classification; fault detection; induction machine; stator current; Taylor-Fourier filters; INDUCTION-MOTORS; INCIPIENT FAULT; DIAGNOSIS;
D O I
10.3390/machines11110999
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a feature-based methodology for early bearing fault detection and classification in induction motors through current signals using the digital Taylor-Fourier transform (DTFT) and statistical methods. The DTFT allows the application of narrow bandwidth digital filters located in the spurious current signal components, wherewith it is possible to gain information to detect bearing issues and classify them using statistical methods. The methodology was implemented in MATLAB using the digital Taylor-Fourier transform for three fault types (bearing ball damage, outer-race damage, and corrosion damage) at different powering conditions: power grid source at 60 Hz and adjustable speed drive applied (60 Hz, 50 Hz, 40 Hz, 30 Hz, 20 Hz, and 10 Hz) in loading and unloading conditions. Results demonstrate a classification accuracy between 93-99% for bearing ball damage, 91-99% for outer-race damage, and 94-99% for corrosion damage.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] FPGA-Based Digital Taylor-Fourier Transform
    Avalos-Almazan, Gerardo
    Aguayo-Tapia, Sarahi
    de Jesus Rangel-Magdaleno, Jose
    Avina-Corral, Victor
    IEEE EMBEDDED SYSTEMS LETTERS, 2024, 16 (03) : 299 - 302
  • [2] Voltage Flicker Measurement Based on Taylor-Fourier Transform
    Kuang H.
    Wen H.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2020, 35 (22): : 4798 - 4806
  • [3] Identification of Electromechanical Modes Based on the Digital Taylor-Fourier Transform
    de la O Serna, Jose Antonio
    Ramirez, Juan M.
    Zamora Mendez, Alejandro
    Arrieta Paternina, Mario R.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (01) : 206 - 215
  • [4] Polynomial Implementation of the Taylor-Fourier Transform for Harmonic Analysis
    Angel Platas-Garza, Miguel
    Serna, Jose Antonio de la O.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2014, 63 (12) : 2846 - 2854
  • [5] Dynamic Harmonic Analysis Through Taylor-Fourier Transform
    Angel Platas-Garza, Miguel
    Antonio de la O Serna, Jose
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2011, 60 (03) : 804 - 813
  • [6] Broken Bar Fault Detection Using Taylor-Fourier Filters and Statistical Analysis
    Aguayo-Tapia, Sarahi
    Avalos-Almazan, Gerardo
    de Jesus Rangel-Magdaleno, Jose
    Paternina, Mario R. A.
    ENTROPY, 2023, 25 (01)
  • [7] A Refined Taylor-Fourier Transform with Applications to Wideband Oscillation Monitoring
    Xu, Qunwei
    Ma, Zhiquan
    Li, Pei
    Jiang, Xiaolong
    Wang, Chaoqun
    ELECTRONICS, 2022, 11 (22)
  • [8] Compressive Sensing plus Taylor-Fourier Transform for Synchrophasor Estimation
    Bertocco, Matteo
    Frigo, Guglielmo
    Narduzzi, Claudio
    Muscas, Carlo
    Pegoraro, Paolo Attilio
    2014 IEEE INTERNATIONAL WORKSHOP ON APPLIED MEASUREMENTS FOR POWER SYSTEMS PROCEEDINGS (AMPS), 2014, : 29 - +
  • [9] Broken Rotor Bar Detection in Induction Motors using Digital Taylor-Fourier Transform
    Aguayo-Tapia, Sarahi
    Avalos-Almazan, Gerardo
    Rangel-Magdaleno, Jose
    Paternina, Mario R. A.
    2022 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2022,
  • [10] EEG Gradient Artifact Removal by Compressive Sensing and Taylor-Fourier Transform
    Frigo, Guglielmo
    Narduzzi, Claudio
    2014 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2014, : 313 - 318