A PRIORI BOUNDS FOR POSITIVE RADIAL SOLUTIONS OF QUASILINEAR EQUATIONS OF LANE-EMDEN TYPE

被引:1
作者
Bae, Soohyun [1 ]
机构
[1] Hanbat Natl Univ, Dept Math Sci, Daejeon 34158, South Korea
来源
ARCHIVUM MATHEMATICUM | 2023年 / 59卷 / 02期
关键词
quasilinear equation; positive solution; a priori bound; THEOREMS;
D O I
10.5817/AM2023-2-155
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the quasilinear equation Delta(u)(p) + K(|x|)u(q) = 0, and present the proof of the local existence of positive radial solutions near 0 under suitable conditions on K. Moreover, we provide a priori estimates of positive radial solutions near infinity when r(-l)K(r) for l >= -p is bounded near infinity.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 6 条
[1]  
[Anonymous], 1986, Accad. Naz. dei Lincei
[2]   Nonexistence results and estimates for some nonlinear elliptic problems [J].
Bidaut-Véron, MF ;
Pohozaev, S .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 84 (1) :1-49
[3]   A GENERALIZED POHOZAEV IDENTITY AND ITS APPLICATIONS [J].
KAWANO, N ;
NI, WM ;
YOTSUTANI, S .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1990, 42 (03) :541-564
[4]   STRUCTURE THEOREMS FOR POSITIVE RADIAL SOLUTIONS TO DIV(VERTICAL-BAR-DU-VERTICAL-BAR(M)-2DU)+K(VERTICAL-BAR-X-VERTICAL-BAR)U(Q)=0 IN R(N) [J].
KAWANO, N ;
YANAGIDA, E ;
YOTSUTANI, S .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1993, 45 (04) :719-742
[5]   ON CONFORMAL SCALAR CURVATURE EQUATIONS IN RN [J].
LI, Y ;
NI, WM .
DUKE MATHEMATICAL JOURNAL, 1988, 57 (03) :895-924
[6]   Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities [J].
Serrin, J ;
Zou, HH .
ACTA MATHEMATICA, 2002, 189 (01) :79-142