Detection of Gas Molecules (CO, CO2, NO, and NO2) Using Indium Nitride Nanoribbons for Sensing Device Applications

被引:2
作者
Jha, Kamal K. [1 ]
Jatkar, Mandar [2 ]
Athreya, Pradyumna [3 ]
Tejas, M. P. [2 ]
Jain, Sandeep Kumar [4 ]
机构
[1] Indian Inst Informat Technol Vadodara, Gandhinagar 382028, Gujarat, India
[2] Dayananda Sagar Acad Technol & Management, Bengaluru 560082, Karnataka, India
[3] RVCE, Bengaluru 560059, Karnataka, India
[4] Symbiosis Int SIU, Symbiosis Inst Technol, Nagpur 440008, Maharashtra, India
关键词
Sensors; Nanoribbons; Photonic band gap; Adsorption; Indium; Band structures; Fermi level; Gas; indium nitride (InN); nanoribbons; sensor; ADSORPTION;
D O I
10.1109/JSEN.2023.3307761
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The article investigates the electronic properties and structural stability of pristine, bare and several adsorption gases of ZInNNR-2, ZInNNR-4, and ZInNNR-6 structures. Density functional theory (DFT) is utilized to analyze the width dependency. It is demonstrated by the band structures and density of states (DOS) that the electronic properties of all bare ZInNNR structures have a metallic characteristic. Bare-ZInNNR-6 and Pristine-6 structures were found to be the most thermostatically stable based on binding energy computation and based on adsorption calculations, CO, CO2, NO, NO2 ZInNNR with a width of 6 were found to be the most energetically favorable configurations among all other ZInNNR-related configurations. Of all the evaluated ZInNNR configurations, the NO2/NO ZInNNR demonstrates the greatest selectivity, making it the preferred option for this application. The CO2-ZInNNR-6 configuration shows strong candidature to become the disposal sensing device due to its quicker recovery time. The suggested device demonstrates the superior sensing capability for nanoscale sensing devices.
引用
收藏
页码:22660 / 22667
页数:8
相关论文
共 45 条
[1]   Highly Sensitive Sensing of NO and NO2 Gases by Monolayer C3N [J].
Babar, Vasudeo ;
Sharma, Sitansh ;
Schwingenschlogl, Udo .
ADVANCED THEORY AND SIMULATIONS, 2018, 1 (06)
[2]   Hexagonal AlN: Dimensional-crossover-driven band-gap transition [J].
Bacaksiz, C. ;
Sahin, H. ;
Ozaydin, H. D. ;
Horzum, S. ;
Senger, R. T. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2015, 91 (08)
[3]   Synthesis and structure of gallium nitride nanobelts [J].
Bae, SY ;
Seo, HW ;
Park, J ;
Yang, H ;
Song, SA .
CHEMICAL PHYSICS LETTERS, 2002, 365 (5-6) :525-529
[4]   2D Boron Nitride: Synthesis and Applications [J].
Bhimanapati, G. R. ;
Glavin, N. R. ;
Robinson, J. A. .
2D MATERIALS, 2016, 95 :101-147
[5]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[6]   Investigation on band structure and electronic transport properties of indium nitride nanoribbon - A first-principles study [J].
Chandiramouli, R. ;
Sriram, S. .
SUPERLATTICES AND MICROSTRUCTURES, 2014, 65 :22-34
[7]   Hydrogenation: A Simple Approach To Realize Semiconductor-Half-Metal-Metal Transition in Boron Nitride Nanoribbons [J].
Chen, Wei ;
Li, Yafei ;
Yu, Guangtao ;
Li, Chen-Zhong ;
Zhang, Shengbai B. ;
Zhou, Zhen ;
Chen, Zhongfang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (05) :1699-1705
[8]  
Cordos E, 2006, 2006 IEEE-TTTC INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS, VOL 2, PROCEEDINGS, P208
[9]   First-principle studies of electronic structure and C-doping effect in boron nitride nanoribbon [J].
Du, A. J. ;
Smith, Sean C. ;
Lu, G. Q. .
CHEMICAL PHYSICS LETTERS, 2007, 447 (4-6) :181-186
[10]   Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons [J].
Erickson, Kris J. ;
Gibb, Ashley L. ;
Sinitskii, Alexander ;
Rousseas, Michael ;
Alem, Nasim ;
Tour, James M. ;
Zettl, Alex K. .
NANO LETTERS, 2011, 11 (08) :3221-3226