Achieving All-Plateau and High-Capacity Sodium Insertion in Topological Graphitized Carbon

被引:205
作者
He, Xiang-Xi [1 ,2 ]
Lai, Wei-Hong [3 ]
Liang, Yaru [4 ]
Zhao, Jia-Hua [1 ,2 ]
Yang, Zhuo [3 ]
Peng, Jian [3 ]
Liu, Xiao-Hao [2 ]
Wang, Yun-Xiao [3 ]
Qiao, Yun [1 ]
Li, Li [1 ,6 ]
Wu, Xingqiao [2 ,5 ]
Chou, Shu-Lei [2 ,5 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou 325035, Zhejiang, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, InnovationCampus, Wollongong, NSW 2500, Australia
[4] Xiangtan Univ, Sch Mat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[5] Wenzhou Univ, Wenzhou Key Lab Sodium Ion Batteries, Technol Innovat Inst Carbon Neutralizat, Wenzhou 325035, Zhejiang, Peoples R China
[6] Nankai Univ, Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
hard carbon; insertion mechanism; sodium-ion batteries; topological tunneling; HARD CARBONS; RAMAN-SPECTROSCOPY; GRAPHENE; MODEL;
D O I
10.1002/adma.202302613
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hard carbon anodes with all-plateau capacities below 0.1 V are prerequisites to achieve high-energy-density sodium-ion storage, which holds promise for future sustainable energy technologies. However, challenges in removing defects and improving the insertion of sodium ions head off the development of hard carbon to achieve this goal. Herein, a highly cross-linked topological graphitized carbon using biomass corn cobs through a two-step rapid thermal-annealing strategy is reported. The topological graphitized carbon constructed with long-range graphene nanoribbons and cavities/tunnels provides a multidirectional insertion of sodium ions whilst eliminating defects to absorb sodium ions at the high voltage region. Evidence from advanced techniques including in situ XRD, in situ Raman, and in situ/ex situ transmission electron microscopy (TEM) indicates that the sodium ions' insertion and Na cluster formation occurred between curved topological graphite layers and in the topological cavity of adjacent graphite band entanglements. The reported topological insertion mechanism enables outstanding battery performance with a single full low-voltage plateau capacity of 290 mAh g(-1), which is almost 97% of the total capacity.
引用
收藏
页数:11
相关论文
共 42 条
[1]   A revised mechanistic model for sodium insertion in hard carbons [J].
Au, Heather ;
Alptekin, Hande ;
Jensen, Anders C. S. ;
Olsson, Emilia ;
O'Keefe, Christopher A. ;
Smith, Thomas ;
Crespo-Ribadeneyra, Maria ;
Headen, Thomas F. ;
Grey, Clare P. ;
Cai, Qiong ;
Drew, Alan J. ;
Titirici, Maria-Magdalena .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3469-3479
[2]   Elucidation of the Sodium-Storage Mechanism in Hard Carbons [J].
Bai, Panxing ;
He, Yongwu ;
Zou, Xiaoxi ;
Zhao, Xinxin ;
Xiong, Peixun ;
Xu, Yunhua .
ADVANCED ENERGY MATERIALS, 2018, 8 (15)
[3]   The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies [J].
Bauer, Alexander ;
Song, Jie ;
Vail, Sean ;
Pan, Wei ;
Barker, Jerry ;
Lu, Yuhao .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[4]   Electrochemical Properties and Theoretical Capacity for Sodium Storage in Hard Carbon: Insights from First Principles Calculations [J].
Bommier, Clement ;
Ji, Xiulei ;
Greaney, P. Alex .
CHEMISTRY OF MATERIALS, 2019, 31 (03) :658-677
[5]   Model of micropore closure in hard carbon prepared from sucrose [J].
Buiel, ER ;
George, AE ;
Dahn, JR .
CARBON, 1999, 37 (09) :1399-1407
[6]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[7]   Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry [J].
Dou, Xinwei ;
Hasa, Ivana ;
Saurel, Damien ;
Vaalma, Christoph ;
Wu, Liming ;
Buchholz, Daniel ;
Bresser, Dominic ;
Komaba, Shinichi ;
Passerini, Stefano .
MATERIALS TODAY, 2019, 23 :87-104
[8]   Correlation of Structure and Performance of Hard Carbons as Anodes for Sodium Ion Batteries [J].
Gomez-Martin, Aurora ;
Martinez-Fernandez, Julian ;
Ruttert, Mirco ;
Winter, Martin ;
Placke, Tobias ;
Ramirez-Rico, Joaquin .
CHEMISTRY OF MATERIALS, 2019, 31 (18) :7288-7299
[9]   Y Soft-Carbon-Coated, Free-Standing, Low-Defect, Hard-Carbon Anode To Achieve a 94% Initial Coulombic Efficiency for Sodium-Ion Batteries [J].
He, Xiang-Xi ;
Zhao, Jia-Hua ;
Lai, Wei-Hong ;
Li, Rongrong ;
Yang, Zhuo ;
Xu, Chun-mei ;
Dai, Yingying ;
Gao, Yun ;
Liu, Xiao-Hao ;
Li, Li ;
Xu, Gang ;
Qiao, Yun ;
Chou, Shu-Lei ;
Wu, Minghong .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (37) :44358-44368
[10]   Hard Carbon Microtubes Made from Renewable Cotton as High-Performance Anode Material for Sodium-Ion Batteries [J].
Li, Yunming ;
Hu, Yong-Sheng ;
Titirici, Maria-Magdalena ;
Chen, Liquan ;
Huang, Xuejie .
ADVANCED ENERGY MATERIALS, 2016, 6 (18)