Performance and Impedance of a Partially Flooded Cathode Catalyst Layer in a Low-Platinum Polymer Electrolyte Membrane Fuel Cell

被引:0
作者
Kulikovsky, Andrei [1 ,2 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res, Theory & Computat Energy Mat IEK 13, D-52425 Julich, Germany
[2] Lomonosov Moscow State Univ, Res Comp Ctr, Moscow 119991, Russia
关键词
Low-Pt PEM fuel cell; impedance; flooding; modeling; OXYGEN-TRANSPORT; NAFION FILM; RESISTANCE; IMPACT; MODEL;
D O I
10.1149/1945-7111/acf39f
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A model for performance and impedance of a partially flooded cathode catalyst layer (CCL) in a low-platinum PEM fuel cell is developed. The CCL is modeled by a system of cylindrical pores approximating real pore-size distribution in the electrode. The model includes oxygen transport along the pores and through the ionomer film covering Pt/C agglomerates. Part of the pore domain adjacent to the membrane is allowed to be flooded. Fitting of the model to experimental impedance spectra of a low-platinum PEM fuel cell shows 30%-40% CCL flooding. Flooding effectively reduces the CCL volume available for current conversion, thereby lowering the limiting current density due to oxygen transport through the ionomer film.
引用
收藏
页数:7
相关论文
共 50 条
[21]   A generic electrical circuit for performance analysis of the fuel cell cathode catalyst layer through electrochemical impedance spectroscopy [J].
Cruz-Manzo, Samuel ;
Chen, Rui .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 694 :45-55
[22]   A Hierarchical Model for Oxygen Transport in Agglomerates in the Cathode Catalyst Layer of a Polymer-Electrolyte Fuel Cell [J].
Darling, Robert M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (09) :F571-F580
[23]   Optimization of cathode catalyst layer of membrane electrode assembly for polymer electrolyte fuel cells using machine learning [J].
Uenishi, Toru ;
Imoto, Rui .
JOURNAL OF POWER SOURCES, 2023, 573
[24]   Experimental and numerical study on catalyst layer of polymer electrolyte membrane fuel cell prepared with diverse drying methods [J].
Talukdar, Krishan ;
Ripan, Md Asaduzzaman ;
Jahnke, Thomas ;
Gazdzicki, Pawel ;
Morawietz, Tobias ;
Friedrich, K. Andreas .
JOURNAL OF POWER SOURCES, 2020, 461
[25]   Effect of carbon nanotube-based catalyst layer surface roughness on polymer electrolyte membrane fuel cell performance [J].
Phua, Yin Kan ;
Weerathunga, Don Terrence Dhammika ;
Wu, Dan ;
Kim, Chaerin ;
Jayawickrama, Samindi Madhubha ;
Tanaka, Naoki ;
Fujigaya, Tsuyohiko .
SUSTAINABLE ENERGY & FUELS, 2022, 6 (20) :4636-4644
[26]   Impedance based performance model for polymer electrolyte membrane fuel cells [J].
Heinzmann, Marcel ;
Weber, Andre .
JOURNAL OF POWER SOURCES, 2023, 558
[27]   Effects of gas-diffusion layer properties on the performance of the cathode for high-temperature polymer electrolyte membrane fuel cell [J].
Chun, Hyunsoo ;
Kim, Do-Hyung ;
Jung, Hyeon-Seung ;
Sim, Jaebong ;
Pak, Chanho .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (71) :27790-27804
[28]   Mass transfer formulation for polymer electrolyte membrane fuel cell cathode [J].
Beale, Steven B. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (35) :11641-11650
[29]   Transient response of low platinum-loaded proton exchange membrane fuel cells with various cathode catalyst layer compositions [J].
Saeidfar, Asal ;
Yesilyurt, Serhat .
APPLIED ENERGY, 2025, 382
[30]   Electrochemical performance and impedance of a conical pore in the low-Pt PEM fuel cell catalyst layer [J].
Kulikovsky, Andrei .
ELECTROCHEMICAL SCIENCE ADVANCES, 2024, 4 (04)