A new regularized stochastic approximation framework for stochastic inverse problems

被引:2
作者
Dippon, Juergen [1 ]
Gwinner, Joachim [2 ]
Khan, Akhtar A. [4 ]
Sama, Miguel [3 ]
机构
[1] Univ Stuttgart, Inst Stochast & Anwendungen, Stuttgart, Germany
[2] Univ Bundeswehr Munchen, Inst Angew Math, Fak Luft & Raumfahrttechn, Werner Heisenberg Weg 39, D-85577 Munich, Germany
[3] Univ Nacl Educ Distancia, Dept Matemat Aplicada, Calle Juan Rosal 12, E-28040 Madrid, Spain
[4] Rochester Inst Technol, Sch Math Sci, 85 Lomb Mem Dr, Rochester, NY 14623 USA
关键词
Stochastic inverse problems; Partial differential equations with random data; Regularization; Karhunen-Loeve expansion; Extragradient methods; Stochastic approximation; VARIATIONAL-INEQUALITIES; CONVERGENCE; DESCENT;
D O I
10.1016/j.nonrwa.2023.103869
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear inverse problem of estimating stochastic parameters in the fourth-order partial differential equation with random data. The primary focus is on developing a novel stochastic approximation framework for inverse problems consisting of three key components. As a first step, we reformulate the inverse problem into a stochastic convex optimization problem. The second step includes developing a new regularized stochastic extragradient framework for a nonlinear variational inequality, which subsumes the optimality conditions for the optimization formulation of the inverse problem. The third step involves modeling random variables by a Karhunen-Loeve type finite-dimensional noise representation, allowing the direct and the inverse problems to be conveniently discretized. We show that the regularized extragradient methods are strongly convergent in a Hilbert space setting, and we also provide several auxiliary results for the inverse problem, including Lipschitz continuity and a derivative characterization of the solution map. We provide the outcome of computational experiments to estimate stochastic and deterministic parameters. The numerical results demonstrate the feasibility and effectiveness of the developed framework and validate stochastic approximation as an effective method for stochastic inverse problems.& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:29
相关论文
共 43 条
[1]  
[Anonymous], 1985, Herbert Robbins Selected Papers
[2]  
Antipin A.S., 2002, Vychisl. Metody Program., V3, P144
[3]   Galerkin finite element approximations of stochastic elliptic partial differential equations [J].
Babuska, I ;
Tempone, R ;
Zouraris, GE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :800-825
[4]  
Back J., 2011, Lecture Notes in Computational Science and Engineering, V76, P43, DOI DOI 10.1007/978-3-642-15337
[5]   A random time-dependent noncooperative equilibrium problem [J].
Barbagallo, Annamaria ;
Lo Bianco, Serena Guarino .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 84 (01) :27-52
[6]   Stochastic variational formulation for a general random time-dependent economic equilibrium problem [J].
Barbagallo, Annamaria ;
Guarino Lo Bianco, Serena .
OPTIMIZATION LETTERS, 2020, 14 (08) :2479-2493
[7]   Stochastic weighted variational inequalities in non-pivot Hilbert spaces with applications to a transportation model [J].
Barbagallo, Annamaria ;
Scilla, Giovanni .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (02) :1118-1134
[8]   Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients [J].
Barth, Andrea ;
Schwab, Christoph ;
Zollinger, Nathaniel .
NUMERISCHE MATHEMATIK, 2011, 119 (01) :123-161
[9]   Hilbert-valued perturbed subgradient algorithms [J].
Barty, Kengy ;
Roy, Jean-Sebastien ;
Strugarek, Cyrille .
MATHEMATICS OF OPERATIONS RESEARCH, 2007, 32 (03) :551-562
[10]   Gradient convergence in gradient methods with errors [J].
Bertsekas, DP ;
Tsitsiklis, JN .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (03) :627-642