Hybrid Global Structure Model for Unraveling Influential Nodes in Complex Networks

被引:0
作者
Mukhtar, Mohd Fariduddin [1 ,2 ]
Abas, Zuraida Abal [1 ]
Rasib, Amir Hamzah Abdul [2 ]
Anuar, Siti Haryanti Hairol [1 ]
Zaki, Nurul Hafizah Mohd [1 ]
Rahman, Ahmad Fadzli Nizam Abdul [1 ]
Abidin, Zaheera Zainal [1 ]
Shibghatullah, Abdul Samad [3 ]
机构
[1] Univ Teknikal Malaysia Melaka, Fak Teknol Maklumat & Komunikasi, Melaka, Malaysia
[2] Univ Teknikal Malaysia Melaka, Fak Teknol Kejuruteraan Mekanikal & Pembuatan, Melaka, Malaysia
[3] UCSI Univ, Inst Comp Sci & Digital Innovat, Kuala Lumpur 56000, Malaysia
关键词
Centrality indices; combination; hybrid; global structure model; influential nodes; CENTRALITY; SPREADERS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In graph analytics, the identification of influential nodes in real-world networks plays a crucial role in understanding network dynamics and enabling various applications. However, traditional centrality metrics often fall short in capturing the interplay between local and global network information. To address this limitation, the Global Structure Model (GSM) and its improved version (IGSM) have been proposed. Nonetheless, these models still lack an adequate representation of path length. This research aims to enhance existing approaches by developing a hybrid model called H-GSM. The H-GSM algorithm integrates the GSM framework with local and global centrality measurements, specifically Degree Centrality (DC) and K-Shell Centrality (KS). By incorporating these additional measures, the H-GSM model strives to improve the accuracy of identifying influential nodes in complex networks. To evaluate the effectiveness of the H-GSM model, real-world datasets are employed, and comparative analyses are conducted against existing techniques. The results demonstrate that the H-GSM model outperforms these techniques, showcasing its enhanced performance in identifying influential nodes. As future research directions, it is proposed to explore different combinations of index styles and centrality measures within the H-GSM framework.
引用
收藏
页码:724 / 730
页数:7
相关论文
共 50 条
  • [21] A novel voting measure for identifying influential nodes in complex networks based on local structure
    Li, Haoyang
    Wang, Xing
    Chen, You
    Cheng, Siyi
    Lu, Dejiang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [22] A hybrid node ranking technique for finding influential nodes in complex social networks
    Kanwar, Kushal
    Kaushal, Sakshi
    Kumar, Harish
    LIBRARY HI TECH, 2022, 40 (01) : 98 - 114
  • [23] Identifying influential nodes in complex networks: Effective distance gravity model
    Shang, Qiuyan
    Deng, Yong
    Cheong, Kang Hao
    INFORMATION SCIENCES, 2021, 577 : 162 - 179
  • [24] A new evidential methodology of identifying influential nodes in complex networks
    Bian, Tian
    Deng, Yong
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 101 - 110
  • [25] A modified weighted TOPSIS to identify influential nodes in complex networks
    Hu, Jiantao
    Du, Yuxian
    Mo, Hongming
    Wei, Daijun
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 444 : 73 - 85
  • [26] Detection of Influential Nodes Using Neighbor Closeness in Complex Networks
    Dai, Jinying
    Li, Cong
    Li, Xiang
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 764 - 769
  • [27] Influential Nodes Identification in Complex Networks via Information Entropy
    Guo, Chungu
    Yang, Liangwei
    Chen, Xiao
    Chen, Duanbing
    Gao, Hui
    Ma, Jing
    ENTROPY, 2020, 22 (02)
  • [28] CAGM: A communicability-based adaptive gravity model for influential nodes identification in complex networks
    Xu, Guiqiong
    Dong, Chen
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 235
  • [29] GPN: A novel gravity model based on position and neighborhood to identify influential nodes in complex networks
    Tu, Dengqin
    Xu, Guiqiong
    Meng, Lei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (17):
  • [30] Finding influential nodes in complex networks based on Kullback-Leibler model within the neighborhood
    Wang, Guan
    Sun, Zejun
    Wang, Tianqin
    Li, Yuanzhe
    Hu, Haifeng
    SCIENTIFIC REPORTS, 2024, 14 (01):