Lung Nodule Segmentation on CT Scan Images Using Patchwise Iterative Graph Clustering

被引:4
作者
Modak, Sudipta [1 ]
Abdel-Raheem, Esam [1 ]
Rueda, Luis [2 ]
机构
[1] Univ Windsor, Dept Elect & Comp Engn, Windsor, ON, Canada
[2] Univ Windsor, Sch Comp Sci, Windsor, ON, Canada
来源
2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS | 2023年
基金
加拿大自然科学与工程研究理事会;
关键词
Lung nodule segmentation; graph clustering; region adjacency graph; agglomerative clustering;
D O I
10.1109/ISCAS46773.2023.10181811
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the most important steps in lung nodule diagnosis is the automatic segmentation of nodules irrespective of their position and size in the lung parenchyma. In this paper, we propose a new way of applying graph clustering to nodule segmentation. Firstly, the image is preprocessed to extract the lung parenchyma from the CT scan image and identify the region of interest. This is followed by the application of Patchwise Iterative Graph Clustering to spilt the patches and generate superpixels. Next, a region adjacency graph is generated, and agglomerative hierarchical clustering is used to merge the superpixels into different structures such as nodules, and blood vessels. A thresholding algorithm is then used to extract the nodules from the clusters. The proposed method has shown good performance in segmentation with an average dice score of 0.88, an intersection over union score of 0.81, and a high average sensitivity of 89.32 %. Furthermore, the proposed method has been compared to several state-of-the-art methods in the field and has shown an increase in performance in terms of the evaluation metrics.
引用
收藏
页数:5
相关论文
共 30 条
[1]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[2]   Kernel-based Bayesian clustering of computed tomography images for lung nodule segmentation [J].
Baby, Yadhu ;
Sumathy, Vinod Kumar Ramayyan .
IET IMAGE PROCESSING, 2020, 14 (05) :890-900
[3]   Dual-branch residual network for lung nodule segmentation [J].
Cao, Haichao ;
Liu, Hong ;
Song, Enmin ;
Hung, Chih-Cheng ;
Ma, Guangzhi ;
Xu, Xiangyang ;
Jin, Renchao ;
Lu, Jianguo .
APPLIED SOFT COMPUTING, 2020, 86
[4]   DFDM: A DEEP FEATURE DECOUPLING MODULE FOR LUNG NODULE SEGMENTATION [J].
Chen, Wei ;
Wang, Qiuli ;
Huang, Sheng ;
Zhang, Xiaohong ;
Li, Yucong ;
Liu, Chen .
2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, :1120-1124
[5]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[6]  
El-Regaily Salsabil Amin, 2017, 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS). Proceedings, P72, DOI 10.1109/INTELCIS.2017.8260029
[7]  
Hancock M.C., 2019, LUNG NODULE SEGMENTA
[8]  
He K, 2016, Proceedings of the IEEE conference on computer vision and pattern recognition, DOI [DOI 10.1109/CVPR.2016.90, 10.1109/CVPR.2016.90]
[9]   Lung nodule segmentation using Salp Shuffled Shepherd Optimization Algorithm-based Generative Adversarial Network [J].
Jain, Supiksha ;
Indora, Sanjeev ;
Atal, Dinesh Kumar .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
[10]   Image Segmentation Based on Level Set Method [J].
Jiang, Xin ;
Zhang, Renjie ;
Nie, Shengdong .
2012 INTERNATIONAL CONFERENCE ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING (ICMPBE2012), 2012, 33 :840-845