Quantum state preparation using tensor networks

被引:13
作者
Melnikov, Ar A. [1 ]
Termanova, A. A. [1 ]
Dolgov, S., V [2 ]
Neukart, F. [1 ,3 ]
Perelshtein, M. R. [1 ,4 ]
机构
[1] Terra Quantum AG, Kornhausstr 25, CH-9000 St Gallen, Switzerland
[2] Univ Bath, Claverton Down, Bath BA2 7AY, England
[3] Leiden Univ Leiden, LIACS, Leiden, Netherlands
[4] Aalto Univ, Sch Sci, QTF Ctr Excellence, Dept Appl Phys, POB 15100, FI-00076 Espoo, Finland
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2023年 / 8卷 / 03期
关键词
tensor networks; quantum computing; variational circuits; quantum state preparation; Riemannian optimization; SYSTEMS;
D O I
10.1088/2058-9565/acd9e7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state preparation is a vital routine in many quantum algorithms, including solution of linear systems of equations, Monte Carlo simulations, quantum sampling, and machine learning. However, to date, there is no established framework of encoding classical data into gate-based quantum devices. In this work, we propose a method for the encoding of vectors obtained by sampling analytical functions into quantum circuits that features polynomial runtime with respect to the number of qubits and provides >99.9% accuracy, which is better than a state-of-the-art two-qubit gate fidelity. We employ hardware-efficient variational quantum circuits, which are simulated using tensor networks, and matrix product state representation of vectors. In order to tune variational gates, we utilize Riemannian optimization incorporating auto-gradient calculation. Besides, we propose a cut once, measure twice' method, which allows us to avoid barren plateaus during gates' update, benchmarking it up to 100-qubit circuits. Remarkably, any vectors that feature low-rank structure-not limited by analytical functions-can be encoded using the presented approach. Our method can be easily implemented on modern quantum hardware, and facilitates the use of the hybrid-quantum computing architectures.
引用
收藏
页数:12
相关论文
共 75 条
  • [1] Ahmadi-Asl S, 2022, Arxiv, DOI arXiv:2207.06072
  • [2] Araujo I F, arXiv
  • [3] A divide-and-conquer algorithm for quantum state preparation
    Araujo, Israel F.
    Park, Daniel K.
    Petruccione, Francesco
    da Silva, Adenilton J.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [4] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [5] Rohrbach PB, 2020, Arxiv, DOI arXiv:2001.08187
  • [6] TREE ADAPTIVE APPROXIMATION IN THE HIERARCHICAL TENSOR FORMAT
    Ballani, Jonas
    Grasedyck, Lars
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04) : A1415 - A1431
  • [7] Baydin AG, 2018, J MACH LEARN RES, V18
  • [8] Belokonev NS, 2023, Arxiv, DOI arXiv:2304.12307
  • [9] Noisy intermediate-scale quantum algorithms
    Bharti, Kishor
    Cervera-Lierta, Alba
    Kyaw, Thi Ha
    Haug, Tobias
    Alperin-Lea, Sumner
    Anand, Abhinav
    Degroote, Matthias
    Heimonen, Hermanni
    Kottmann, Jakob S.
    Menke, Tim
    Mok, Wai-Keong
    Sim, Sukin
    Kwek, Leong-Chuan
    Aspuru-Guzik, Alan
    [J]. REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
  • [10] Quantum machine learning
    Biamonte, Jacob
    Wittek, Peter
    Pancotti, Nicola
    Rebentrost, Patrick
    Wiebe, Nathan
    Lloyd, Seth
    [J]. NATURE, 2017, 549 (7671) : 195 - 202