Two-dimensional diffusive epidemic process in the presence of quasiperiodic and quenched disorder

被引:1
作者
Alencar, D. S. M. [1 ]
Alves, T. F. A. [1 ]
Alves, G. A. [2 ]
Lima, F. W. S. [1 ]
Macedo-Filho, A. [2 ]
Ferreira, R. S. [3 ]
机构
[1] Univ Fed Piaui, Dept Fis, BR-57072970 Teresina, PI, Brazil
[2] Univ Estadual Piaui, Dept Fis, BR-64002150 Teresina, PI, Brazil
[3] Univ Fed Ouro Preto, Dept Ciencias Exatas & Aplicadas, BR-35931008 Joao Monlevade, MG, Brazil
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2023年 / 2023卷 / 04期
关键词
diffusive epidemic process; quenched disorder; quasiperiodic order; Harris-Barghathi-Vojta criterion; metapopulation models; CRITICAL-BEHAVIOR; MODEL;
D O I
10.1088/1742-5468/acc64d
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This work considers the diffusive epidemic process model coupled to the square lattice, the Penrose quasiperiodic lattice, and the Voronoi-Delaunay random lattice. The main objective is to verify if spatial disorder influences critical behavior. According to the Harris-Barghathi-Vojta criterion, quenched or quasiperiodic disorder can change the critical behavior of the system, depending on the disorder decay exponent of the lattice. We employed extensive Monte Carlo simulations of the relevant quantities. Furthermore, we estimate the critical exponent ratios. Our results suggest that the disorder does not change the critical behavior when comparing the critical exponent ratios for the three studied lattice structures. In addition, the critical exponents depend on the three possible diffusion regimes: (1) where diffusion is dominated by susceptible individuals, (2) where infected and susceptible individuals have the same diffusion constant, and (3) where diffusion is dominated by the infected individuals.
引用
收藏
页数:14
相关论文
共 43 条
[1]   The diffusive epidemic process on Barabasi-Albert networks [J].
Alves, T. F. A. ;
Alves, G. A. ;
Macedo-Filho, A. ;
Ferreira, R. S. ;
Lima, F. W. S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (04)
[2]   Consensus formation in continuous opinion dynamics on quasiperiodic lattices [J].
Alves, T. F. A. ;
Lima, F. W. S. ;
Macedo-Filho, A. ;
Alves, G. A. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (01)
[3]   Critical behavior of majority vote model on two-dimensional quasiperiodic tilings [J].
Alves, T. F. A. ;
Lima, F. W. S. ;
Macedo-Filho, A. ;
Alves, G. A. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
[4]   Universality classes of the absorbing state transition in a system with interacting static and diffusive populations [J].
Argolo, C. ;
Quintino, Yan ;
Siqueira, Y. ;
Gleria, Iram ;
Lyra, M. L. .
PHYSICAL REVIEW E, 2009, 80 (06)
[5]   Critical behavior of a two-species reaction-diffusion problem in 2D [J].
Bertrand, D. ;
Siqueira, Y. ;
Lyra, M. L. ;
Gleria, Iram ;
Argolo, C. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 386 (02) :748-751
[6]   Critical Behaviors in Contagion Dynamics [J].
Bottcher, L. ;
Nagler, J. ;
Herrmann, H. J. .
PHYSICAL REVIEW LETTERS, 2017, 118 (08)
[7]   Failure and recovery in dynamical networks [J].
Bottcher, L. ;
Lukovic, M. ;
Nagler, J. ;
Havlin, S. ;
Herrmann, H. J. .
SCIENTIFIC REPORTS, 2017, 7
[8]   Reaction-diffusion processes and metapopulation models in heterogeneous networks [J].
Colizza, Vittoria ;
Pastor-Satorras, Romualdo ;
Vespignani, Alessandro .
NATURE PHYSICS, 2007, 3 (04) :276-282
[9]   Criticality of a contact process with coupled diffusive and nondiffusive fields [J].
da Costa, N. V. ;
Fulco, U. L. ;
Lyra, M. L. ;
Gleria, I. M. .
PHYSICAL REVIEW E, 2007, 75 (03)
[10]   Critical properties of the SIS model dynamics on the Apollonian network [J].
da Silva, L. F. ;
Costa Filho, R. N. ;
Cunha, A. R. ;
Macedo-Filho, A. ;
Serva, M. ;
Fulco, U. L. ;
Albuquerque, E. L. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,