Room Temperature Synthesis of Branched ZnO Nanowires Array with Tunable Morphology

被引:1
作者
Zhao, Wei [1 ,2 ]
Chang, Hsiang-Shun [1 ,3 ]
Yao, Kefu [1 ,3 ]
Shao, Yang [1 ,3 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[2] State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[3] Minist Educ, Key Lab Adv Mat Proc Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
hollow nanowire; Zn nanowire; ZnO nanowire; room temperature; immersion; SOLAR-CELLS; NANOSTRUCTURES; NANOTREE; GROWTH; ROUTE;
D O I
10.3390/coatings13020275
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Herein, a novel method is proposed to synthesize B-ZnO NWA by simply immersing the Zn NWA in NaOH solution at room temperature (25 degrees C). Based on the systematic investigation of various factors that affect the growth of B-ZnO NWA, the growth mechanism of B-ZnO NWA is clarified. Guided by the growth mechanism, the control of the morphology of B-ZnO NWA is achieved by adjusting the pore structure of anodized aluminum oxide templates, hot-pressing parameters, NaOH concentration, solution temperature, and immersion time. In contrast to previous reports, the prepared B-ZnO NWA has hollow trunks, which can further increase the specific area of B-ZnO NWA. Considering the facile, environmental, and low-cost synthesis, the prepared B-ZnO NWA with tunable morphology has great prospects in a wide range of applications, especially those related to the conversion and utilization of solar energy, which are gaining increasing interest nowadays.
引用
收藏
页数:10
相关论文
共 32 条
[1]   Enhanced gas sensing properties of branched ZnO nanowires [J].
An, Soyeon ;
Park, Sunghoon ;
Ko, Hyunsung ;
Jin, Changhyun ;
Lee, Wan In ;
Lee, Chongmu .
THIN SOLID FILMS, 2013, 547 :241-245
[2]   3D-Branched ZnO/CdS Nanowire Arrays for Solar Water Splitting and the Service Safety Research [J].
Bai, Zhiming ;
Yan, Xiaoqin ;
Li, Yong ;
Kang, Zhuo ;
Cao, Shiyao ;
Zhang, Yue .
ADVANCED ENERGY MATERIALS, 2016, 6 (03)
[3]   Rational Design of Hyperbranched Nanowire Systems for Tunable Superomniphobic Surfaces Enabled by Atomic Layer Deposition [J].
Bielinski, Ashley R. ;
Boban, Bielinski ;
He, Yang ;
Kazyak, Eric ;
Lee, Duck Hyun ;
Wang, Chongmin ;
Tuteja, Anish ;
Dasgupta, Neil P. .
ACS NANO, 2017, 11 (01) :478-489
[4]   Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays [J].
Cho, Seungho ;
Jang, Ji-Wook ;
Lee, Jae Sung ;
Lee, Kun-Hong .
NANOSCALE, 2010, 2 (10) :2199-2202
[5]   Brush-Shaped ZnO Heteronanorods Synthesized Using Thermal-Assisted Pulsed Laser Deposition [J].
Choi, Jaewan ;
Ji, Hyunjin ;
Tambunan, Octolia Togibasa ;
Hwang, In-Sung ;
Woo, Hyung-Sik ;
Lee, Jong-Heun ;
Lee, Bo Wha ;
Liu, Chunli ;
Rhee, Seuk Joo ;
Jung, Chang Uk ;
Kim, Gyu-Tae .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (12) :4682-4688
[6]   Mace-like carbon fiber/ZnO nanorod composite derived from Typha orientalis for lightweight and high-efficient electromagnetic wave absorber [J].
Dong, Yanyan ;
Zhu, Xiaojie ;
Pan, Fei ;
Deng, Baiwen ;
Liu, Zhicheng ;
Zhang, Xiang ;
Huang, Chuang ;
Xiang, Zhen ;
Lu, Wei .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2021, 4 (04) :1002-1014
[7]   Facile preparation of branched hierarchical ZnO nanowire arrays with enhanced photocatalytic activity: A photodegradation kinetic model [J].
Ebrahimi, M. ;
Yousefzadeh, S. ;
Samadi, M. ;
Dong, Chunyang ;
Zhang, Jinlong ;
Moshfegh, A. Z. .
APPLIED SURFACE SCIENCE, 2018, 435 :108-116
[8]   Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate [J].
Fang, YP ;
Pang, Q ;
Wen, XG ;
Wang, BN ;
Yang, SH .
SMALL, 2006, 2 (05) :612-615
[9]   Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2 solar cells with ZnO functional nanotree arrays [J].
Hsieh, Ming-Yang ;
Kuo, Shou-Yi ;
Han, Hau-Vei ;
Yang, Jui-Fu ;
Liao, Yu-Kuang ;
Lai, Fang-I ;
Kuo, Hao-Chung .
NANOSCALE, 2013, 5 (09) :3841-3846
[10]   Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays [J].
Kar, Soumitra ;
Dev, Apurba ;
Chaudhuri, Subhadra .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (36) :17848-17853