A recursive method for the construction and enumeration of self-orthogonal and self-dual codes over the quasi-Galois ring F2r[u]/< ue >

被引:0
作者
Yadav, Monika [1 ]
Sharma, Anuradha [1 ]
机构
[1] IIIT Delhi, Dept Math, New Delhi 110020, India
关键词
Linear codes; Witt decomposition; Classification algorithm; Chain rings; MASS FORMULA; PREPARATA; DESIGNS; KERDOCK;
D O I
10.1007/s10623-023-01185-w
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we provide a recursive method to construct self-orthogonal and self-dual codes of the type {k(1), k(2), ... , k(e)} and length n over the quasi-Galois ring F(2)r[u]/ < u(e) > from a self-orthogonal code of the same length n and dimension k(1) + k(2) + middot middot middot + k([e/2])over F(2)r and vice versa, where F2r is the finite field of order 2r, n > 1, e > 2 are integers, [e2] is the smallest integer greater than or equal to e/2, and k(1), k(2), . . . , k([e/2])are non-negative integers satisfying k(1) <= n - (k(1) + k(2) + middot middot middot + k(e)) and k(i) = k(e-i+2) for 2 <= i <= e. We further apply this recursive method to provide explicit enumeration formulae for self-orthogonal and self-dual codes of an arbitrary length over the ring F(2)r[u]/ < u(e) >. With the help of these enumeration formulae and by carrying out computations in the Magma Computational Algebra system, we classify all self-orthogonal and self-dual codes of lengths 2, 3, 4, 5 over the ring F-2[u]/ < u(3) > and of lengths 2, 3, 4 over the ring F-4[u]/ < u(2) >.
引用
收藏
页码:1973 / 2003
页数:31
相关论文
共 20 条
[1]   Mass formula for self-dual codes over Fq [J].
Alma Betty, Rowena ;
Nemenzo, Fidel ;
Lizann Vasquez, Trilbe .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 57 (1-2) :523-546
[2]   Designs and self-dual codes with long shadows [J].
Bachoc, C ;
Gaborit, P .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2004, 105 (01) :15-34
[3]  
Betty R. A., 2009, J. Combin. Inform. Syst. Sci., V34, P51
[4]   QUATERNARY QUADRATIC RESIDUE CODES AND UNIMODULAR LATTICES [J].
BONNECAZE, A ;
SOLE, P ;
CALDERBANK, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (02) :366-377
[5]   SOME CONNECTIONS BETWEEN SELF-DUAL CODES, COMBINATORIAL DESIGNS AND SECRET SHARING SCHEMES [J].
Bouyuklieva, Stefka ;
Varbanov, Zlatko .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2011, 5 (02) :191-198
[6]   A LINEAR CONSTRUCTION FOR CERTAIN KERDOCK AND PREPARATA CODES [J].
CALDERBANK, AR ;
HAMMONS, AR ;
KUMAR, PV ;
SLOANE, NJA ;
SOLE, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :218-222
[7]  
Dougherty Steven T., 2010, International Journal of Information and Coding Theory, V1, P171, DOI 10.1504/IJICOT.2010.032133
[8]   Secret-sharing schemes based on self-dual codes [J].
Dougherty, Steven T. ;
Mesnager, Sihem ;
Sole, Patrick .
2008 IEEE INFORMATION THEORY WORKSHOP, 2008, :338-+
[9]   Mass formulas for self-dual codes over Z(4) and F-q+uF(q) rings [J].
Gaborit, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (04) :1222-1228
[10]   Construction of new extremal unimodular lattices [J].
Gaborit, P .
EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (04) :549-564