Entropy solutions for some elliptic anisotropic problems involving variable exponent with Fourier boundary conditions and measure data

被引:0
作者
Houede, Dofyniwassouani Alain [1 ]
Ibrango, Idrissa [1 ]
Ouedraogo, Adama [1 ]
机构
[1] Univ NAZI BONI, Bobo Dioulasso, Houet, Burkina Faso
关键词
Entropy solutions; Anisotropic elliptic equations; Anisotropic Sobolev spaces; Fourier boundary condition; Measure data; Variable exponents; REGULARITY; FUNCTIONALS; MINIMIZERS; EXISTENCE; INTEGRALS; EQUATIONS; CALCULUS; SPACES;
D O I
10.1007/s41808-023-00259-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of some nonlinear elliptic anisotropic Fourier boundary-value problems, whose prototype is given by {-Au+g(x,u, del u) + delta|u|(p0(x)-2)u = mu - div phi(u) in Omega, Bu + lambda u = h on Omega, where the right hand side mu belongs to (L)1(omega)+W--1,W-(p) over right arrow '(x)((Omega) over bar), the operator Au is a Leray-Lions anisotropic operator and phi is an element of C-0(R,R-N), the nonlinear term g : Omega x R x R-N -> R satisfying some growth condition but no sign condition. We provide an existence result of entropy solutions for this class of anisotropic problems.
引用
收藏
页码:237 / 277
页数:41
相关论文
共 40 条
  • [1] New diffusion models in image processing
    Aboulaich, R.
    Meskine, D.
    Souissi, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) : 874 - 882
  • [2] Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
  • [3] Regularity results for stationary electro-rheological fluids
    Acerbi, E
    Mingione, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) : 213 - 259
  • [4] Regularity results for a class of functionals with non-standard growth
    Acerbi, E
    Mingione, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) : 121 - 140
  • [5] Regularity criteria via horizontal component of velocity for the Boussinesq equations in anisotropic Lorentz spaces
    Agarwal, Ravi P.
    Alghamdi, Ahmad M.
    Gala, Sadek
    Ragusa, Maria Alessandra
    [J]. DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [6] EXISTENCE OF RENORMALIZED SOLUTIONS FOR SOME DEGENERATE AND NON-COERCIVE ELLIPTIC EQUATIONS
    Akdim, Youssef
    Belayachi, Mohammed
    Hjiaj, Hassane
    [J]. MATHEMATICA BOHEMICA, 2023, 148 (02): : 255 - 282
  • [7] Antontsev S. N., 2006, Ann. Univ. Ferrara Sez. VII Sci. Mat., V52, P19, DOI [10.1007/s11565-006-0002-9, DOI 10.1007/S11565-006-0002-9]
  • [8] A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions
    Antontsev, SN
    Shmarev, SI
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) : 515 - 545
  • [9] Azroul E., 2013, Electron. J. Differ. Equ, V68, P1
  • [10] Azroul E., 2012, Afr. diaspora J. Math, V13, P23