STABILIZING EFFECT OF CAPILLARITY IN THE RAYLEIGH-TAYLOR PROBLEM TO THE VISCOUS INCOMPRESSIBLE CAPILLARY FLUIDS

被引:0
作者
Li, Fucai [1 ]
Zhang, Zhipeng [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
nonhomogeneous incompressible Navier--Stokes--Korteweg equations; Rayleigh-Taylor instability; linear stability; capillarity; bounded domain; INSTABILITY; FLOWS;
D O I
10.1137/21M1456327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
e investigate the stabilizing effect of capillarity in the Rayleigh-Taylor problem to the viscous incompressible capillary fluids driven by gravity in a smooth bounded domain. It is shown that if the steady density p<overline> is heavier with increasing height, i.e., p<overline>'(x(3))>0 , then there exists a finite critical capillary coefficient kappa(c) , such that when the capillary coefficient kappa<kappa(c), the steady-state is linear unstable, while for the case kappa>kappa(c), the steady-state is linear stable. On the other hand, if kappa<kappa(c) and is suitably small, we can also prove that the steady-state is nonlinearly unstable in the sense of Hadamard.
引用
收藏
页码:3287 / 3315
页数:29
相关论文
共 28 条
[1]  
CHANDRASEKHAR S., 1961, Hydrodynamic and hydromagnetic stability
[2]  
GIAQUINTA M, 1982, J REINE ANGEW MATH, V330, P173
[3]   Instability of periodic BGK equilibria [J].
Guo, Y ;
Strauss, WA .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (08) :861-894
[4]   Compressible, In viscid Rayleigh-Taylor Instability [J].
Guo, Yan ;
Tice, Ian .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (02) :677-711
[5]   LINEAR RAYLEIGH-TAYLOR INSTABILITY FOR VISCOUS, COMPRESSIBLE FLUIDS [J].
Guo, Yan ;
Tice, Ian .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (04) :1688-1720
[6]   WAVES IN A HEAVY, VISCOUS, INCOMPRESSIBLE, ELECTRICALLY CONDUCTING FLUID OF VARIABLE DENSITY, IN THE PRESENCE OF A MAGNETIC FIELD [J].
HIDE, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1955, 233 (1194) :376-396
[7]   On the dynamical Rayleigh-Taylor instability [J].
Hwang, HJ ;
Guo, Y .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 167 (03) :235-253
[8]   INSTABILITY THEORY OF THE NAVIER-STOKES-POISSON EQUATIONS [J].
Jang, Juhi ;
Tice, Ian .
ANALYSIS & PDE, 2013, 6 (05) :1121-1181
[9]   Nonlinear Thermal Instability in Compressible Viscous Flows Without Heat Conductivity [J].
Jiang, Fei .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (04) :1509-1539
[10]   ON THE STABILIZING EFFECT OF THE MAGNETIC FIELDS IN THE MAGNETIC RAYLEIGH-TAYLOR PROBLEM [J].
Jiang, Fei ;
Jiang, Song .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (01) :491-540