Targeted anticancer drug delivery via surface engineered iron oxide nanoparticles: A recent update

被引:6
|
作者
Parmanik, Ankita [1 ]
Bose, Anindya [1 ,2 ]
机构
[1] Siksha O Anusandhan Deemed Univ, Sch Pharmaceut Sci, Dept Pharmaceut Anal, Bhubaneswar 751003, Odisha, India
[2] Siksha O Anusandhan Deemedbe Univ, Sch Pharmaceut Sci, Bhubaneswar 700015, Odisha, India
关键词
Surface coating; IONP; Superparamagnetic; Chemotherapeutic; Targeted drug delivery; Cancer therapy; MAGNETIC NANOPARTICLES; CONTRAST AGENTS; IN-VITRO; MRI; FUNCTIONALIZATION; ACID;
D O I
10.1016/j.jddst.2023.105120
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Cancer treatment is a challenging task due to the complexity and variation of the disease, late diagnosis, and severe side effects of the antineoplastic agents. Targeted drug delivery via surface-engineered iron oxide nanoparticles (IONPs) can improve treatment effectiveness while reducing the severity of adverse effects. The effective size control capabilities and superparamagnetic behavior make IONPs a promising drug delivery system for cancer treatment. Their preparation methodologies should optimize essential attributes like size, shape, and superparamagnetic properties. Furthermore, their surface properties must enhance colloidal stability and halflife in the bloodstream. This review describes various surface coating agents currently employed to stabilize the IONPs and their recent uses in targeted drug administration. Surface modified IONPs can be cross-linked with tumor-targeting ligands (like monoclonal antibodies, peptides, and proteins) for their delivery to the cancertargeted site with/without utilizing their magnetic properties. Their active targeting approach can reduce the dosage requirement for efficient drug binding. On the contrary, the passive delivery of IONPs is influenced by their physicochemical properties and particle size. Surface modification with biopolymers can minimize blood protein opsonization, extending blood circulation and sustaining drug release at the cancer site. On the other hand, metal and metal oxide are employed as doping agents on the surface of IONPs to provide good physical and biological strength. Surface functionalized IONPs may become the next generation cancer treatment strategy; however, more study into their clinical applicability and commercialization is required.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery
    El-Boubbou, Kheireddine
    NANOMEDICINE, 2018, 13 (08) : 929 - 952
  • [12] Targeted Delivery of Anticancer Drug Loaded Charged PLGA Polymeric Nanoparticles Using Electrostatic Field
    Miraghaie, Seyyed Hossein
    Zandi, Ashkan
    Davari, Zahra
    Mousavi-kiasary, Mohamad Sadegh
    Saghafi, Zohre
    Gilani, Ali
    Kordehlachin, Yasin
    Shojaeian, Fatemeh
    Mamdouh, Amir
    Heydari, Zahra
    Dorkoosh, Farid Abedin
    Kaffashi, Babak
    Abdolahad, Mohammad
    MACROMOLECULAR BIOSCIENCE, 2023, 23 (09)
  • [13] Iron oxide nanoparticles for sustained delivery of anticancer agents
    Jain, Tapan K.
    Morales, Marco A.
    Sahoo, Sanjeeb K.
    Leslie-Pelecky, Diandra L.
    Labhasetwar, Vinod
    MOLECULAR PHARMACEUTICS, 2005, 2 (03) : 194 - 205
  • [14] Hierarchical targeted hepatocyte mitochondrial multifunctional chitosan nanoparticles for anticancer drug delivery
    Chen, Zhipeng
    Zhang, Liujie
    Song, Yang
    He, Jiayu
    Wu, Li
    Zhao, Can
    Xiao, Yanyu
    Li, Wei
    Cai, Baochang
    Cheng, Haibo
    Li, Weidong
    BIOMATERIALS, 2015, 52 : 240 - 250
  • [15] Recent Advances in Mesoporous Silica Nanoparticles for Targeted Drug Delivery Applications
    Abu-Dief, Ahmed
    Alsehli, Mosa
    Al-Enizi, Abdullah
    Nafady, Ayman
    CURRENT DRUG DELIVERY, 2022, 19 (04) : 436 - 450
  • [16] Chitosan-Coated Iron Oxide Nanoparticles for Molecular Imaging and Drug Delivery
    Arami, Hamed
    Stephen, Zachary
    Veiseh, Omid
    Zhang, Miqin
    CHITOSAN FOR BIOMATERIALS I, 2011, 243 : 163 - 184
  • [17] Design of Organic Macrocycle-Modified Iron Oxide Nanoparticles for Drug Delivery
    Skorjanc, Tina
    Benyettou, Farah
    Olsen, John-Carl
    Trabolsi, Ali
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (35) : 8333 - 8347
  • [18] Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics
    Vangijzegem, Thomas
    Stanicki, Dimitri
    Laurent, Sophie
    EXPERT OPINION ON DRUG DELIVERY, 2019, 16 (01) : 69 - 78
  • [19] Multifunctional Iron Oxide Nanoparticles for Diagnostics, Therapy and Macromolecule Delivery
    Yen, Swee Kuan
    Padmanabhan, Parasuraman
    Selvan, Subramanian Tamil
    THERANOSTICS, 2013, 3 (12): : 975 - 992
  • [20] Preparation and Applications of Superparamagnetic Iron Oxide Nanoparticles in Novel Drug Delivery Systems: An Overview
    Hooshmand, Sara
    Hayat, Seyed Mohammad Gheibi
    Ghorbani, Ahmad
    Khatami, Mehrdad
    Pakravanan, Kimya
    Darroudi, Majid
    CURRENT MEDICINAL CHEMISTRY, 2021, 28 (04) : 777 - 799