Application of deep learning in top pair and single top quark production at the LHC

被引:1
作者
Ahmed, Ijaz [1 ]
Zada, Anwar [2 ]
Waqas, Muhammad [3 ]
Ashraf, M. U. [4 ]
机构
[1] Fed Urdu Univ Arts Sci & Technol, Islamabad, Pakistan
[2] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[3] Riphah Int Univ, Islamabad, Pakistan
[4] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, Ottignies Louvain La Neuv, Belgium
关键词
COLLISIONS;
D O I
10.1140/epjp/s13360-023-04409-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate the performance of a very efficient top tagger applies on hadronically decaying boosted top quark pairs as signal based on deep neural network algorithms working with Lorentz Layer and the Minkowskimetric. Due to limited computing resources, we could show only the receiver ordering characteristic curve, accuracy and loss which illustrates the trade-off between signal acceptance against huge QCD multi-jet background acceptance. Alternatively, we also report the modern machine learning approaches and applymultivariate technique on single top quark production through weak interaction at v root s = 14 TeV proton-proton Collider to demonstrate its observability against the most relevant Standard Model backgrounds through the techniques of boosted decision tree (BDT), likelihood and multilayer perceptron (MLP). The analysis is trained to observe the performance of classifiers in comparison with the conventional cut based and counting approach.
引用
收藏
页数:18
相关论文
共 30 条
  • [11] Machine and deep learning applications in particle physics
    Bourilkov, Dimitri
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (35):
  • [12] Deep-learned Top Tagging with a Lorentz Layer
    Butter, Anja
    Kasieczka, Gregor
    Plehn, Tilman
    Russell, Michael
    [J]. SCIPOST PHYSICS, 2018, 5 (03):
  • [13] Dispelling the N3 myth for the kt jet-finder
    Cacciari, Matteo
    Salam, Gavin P.
    [J]. PHYSICS LETTERS B, 2006, 641 (01) : 57 - 61
  • [14] FastJet user manual
    Cacciari, Matteo
    Salam, Gavin P.
    Soyez, Gregory
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2012, 72 (03): : 1 - 54
  • [15] Measurement of the t-Channel Single Top Quark Production Cross Section in pp Collisions at √s=7 TeV
    Chatrchyan, S.
    Khachatryan, V.
    Sirunyan, A. M.
    Tumasyan, A.
    Adam, W.
    Bergauer, T.
    Dragicevic, M.
    Eroe, J.
    Fabjan, C.
    Friedl, M.
    Fruehwirth, R.
    Ghete, V. M.
    Hammer, J.
    Haensel, S.
    Hoch, M.
    Hoermann, N.
    Hrubec, J.
    Jeitler, M.
    Kiesenhofer, W.
    Krammer, M.
    Liko, D.
    Mikulec, I.
    Pernicka, M.
    Rohringer, H.
    Schoefbeck, R.
    Strauss, J.
    Taurok, A.
    Teischinger, F.
    Wagner, P.
    Waltenberger, W.
    Walzel, G.
    Widl, E.
    Wulz, C-E.
    Mossolov, V.
    Shumeiko, N.
    Gonzalez, J. Suarez
    Bansal, S.
    Benucci, L.
    De Wolf, E. A.
    Janssen, X.
    Maes, J.
    Maes, T.
    Mucibello, L.
    Ochesanu, S.
    Roland, B.
    Rougny, R.
    Selvaggi, M.
    Van Haevermaet, H.
    Van Mechelen, P.
    Van Remortel, N.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (09)
  • [16] The CMS experiment at the CERN LHC
    Chatrchyan, S.
    Hmayakyan, G.
    Khachatryan, V.
    Sirunyan, A. M.
    Adam, W.
    Bauer, T.
    Bergauer, T.
    Bergauer, H.
    Dragicevic, M.
    Eroe, J.
    Friedl, M.
    Fruehwirth, R.
    Ghete, V. M.
    Glaser, P.
    Hartl, C.
    Hoermann, N.
    Hrubec, J.
    Haensel, S.
    Jeitler, M.
    Kastner, K.
    Krammer, M.
    de Abril, I. Magrans
    Markytan, M.
    Mikulec, I.
    Neuherz, B.
    Noebauer, T.
    Oberegger, M.
    Padrta, M.
    Pernicka, M.
    Porth, P.
    Rohringer, H.
    Schmid, S.
    Schreiner, T.
    Stark, R.
    Steininger, H.
    Strauss, J.
    Taurok, A.
    Uhl, D.
    Waltenberger, W.
    Walzel, G.
    Widl, E.
    Wulz, C. -E.
    Petrov, V.
    Prosolovich, V.
    Chekhovsky, V.
    Dvornikov, O.
    Emeliantchik, I.
    Litomin, A.
    Makarenko, V.
    Marfin, I.
    [J]. JOURNAL OF INSTRUMENTATION, 2008, 3
  • [17] Boosted Decision Trees and Applications
    Coadou, Yann
    [J]. SOS 2012 - IN2P3 SCHOOL OF STATISTICS, 2013, 55
  • [18] DELPHES 3: a modular framework for fast simulation of a generic collider experiment
    de Favereau, J.
    Delaere, C.
    Demi, P.
    Giammanco, A.
    Lemaitre, V.
    Mertens, A.
    Selvaggi, M.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (02):
  • [19] Machine Learning based Global Particle Identification Algorithms at the LHCb Experiment
    Derkach, Denis
    Hushchyn, Mikhail
    Kazeev, Nikita
    [J]. 23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018), 2019, 214
  • [20] Deep Learning and Its Application to LHC Physics
    Guest, Dan
    Cranmer, Kyle
    Whiteson, Daniel
    [J]. ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 68, 2018, 68 : 161 - 181