Equilibrium and surviving species in a large Lotka-Volterra system of differential equations

被引:5
作者
Clenet, Maxime [1 ]
Massol, Francois [2 ]
Najim, Jamal [1 ]
机构
[1] Univ Gustave Eiffel, CNRS, Champs Sur Marne, France
[2] Univ Lille, Inst Pasteur Lille, CIIL Ctr Infect & Immun Lille, CNRS,INSERM,CHU Lille,U1019,UMR 9017, F-59000 Lille, France
关键词
Lotka-Volterra equations; Linear complementarity problems; Large random matrices; Stability of food webs; ECOSYSTEMS;
D O I
10.1007/s00285-023-01939-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lotka-Volterra (LV) equations play a key role in the mathematical modeling of various ecological, biological and chemical systems. When the number of species (or, depending on the viewpoint, chemical components) becomes large, basic but fundamental questions such as computing the number of surviving species still lack theoretical answers. In this paper, we consider a large system of LV equations where the interactions between the various species are a realization of a random matrix. We provide conditions to have a unique equilibrium and present a heuristics to compute the number of surviving species. This heuristics combines arguments from Random Matrix Theory, mathematical optimization (LCP), and standard extreme value theory. Numerical simulations, together with an empirical study where the strength of interactions evolves with time, illustrate the accuracy and scope of the results.
引用
收藏
页数:32
相关论文
共 46 条
  • [1] Akjouj I, 2023, Arxiv, DOI arXiv:2302.07820
  • [2] Feasibility of sparse large Lotka-Volterra ecosystems
    Akjouj, Imane
    Najim, Jamal
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2022, 85 (6-7)
  • [3] Stability criteria for complex ecosystems
    Allesina, Stefano
    Tang, Si
    [J]. NATURE, 2012, 483 (7388) : 205 - 208
  • [4] How ecosystems recover from pulse perturbations: A theory of short- to long-term responses
    Arnoldi, J. -F.
    Bideault, A.
    Loreau, M.
    Haegeman, B.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2018, 436 : 79 - 92
  • [5] Bai Z, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-0661-8
  • [6] LIMIT DISTRIBUTIONS FOR ORDER STATISTICS .1.
    BALKEMA, AA
    DEHAAN, L
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1978, 23 (01) : 77 - 92
  • [7] Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model
    Baskerville, Edward B.
    Dobson, Andy P.
    Bedford, Trevor
    Allesina, Stefano
    Anderson, T. Michael
    Pascual, Mercedes
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (12)
  • [8] POSITIVE SOLUTIONS FOR LARGE RANDOM LINEAR SYSTEMS
    Bizeul, Pierre
    Najim, Jamal
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (06) : 2333 - 2348
  • [9] Around the circular law
    Bordenave, Charles
    Chafai, Djalil
    [J]. PROBABILITY SURVEYS, 2012, 9 : 1 - 89
  • [10] Predator traits determine food-web architecture across ecosystems
    Brose, Ulrich
    Archambault, Phillippe
    Barnes, Andrew D.
    Bersier, Louis-Felix
    Boy, Thomas
    Canning-Clode, Joao
    Conti, Erminia
    Dias, Marta
    Digel, Christoph
    Dissanayake, Awantha
    Flores, Augusto A., V
    Fussmann, Katarina
    Gauzens, Benoit
    Gray, Clare
    Haeussler, Johanna
    Hirt, Myriam R.
    Jacob, Ute
    Jochum, Malte
    Kefi, Sonia
    McLaughlin, Orla
    MacPherson, Muriel M.
    Latz, Ellen
    Layer-Dobra, Katrin
    Legagneux, Pierre
    Li, Yuanheng
    Madeira, Carolina
    Martinez, Neo D.
    Mendonca, Vanessa
    Mulder, Christian
    Navarrete, Sergio A.
    O'Gorman, Eoin J.
    Ott, David
    Paula, Jose
    Perkins, Daniel
    Piechnik, Denise
    Pokrovsky, Ivan
    Raffaelli, David
    Rall, Bjoern C.
    Rosenbaum, Benjamin
    Ryser, Remo
    Silva, Ana
    Sohlstroem, Esra H.
    Sokolova, Natalia
    Thompson, Murray S. A.
    Thompson, Ross M.
    Vermandele, Fanny
    Vinagre, Catarina
    Wang, Shaopeng
    Wefer, Jori M.
    Williams, Richard J.
    [J]. NATURE ECOLOGY & EVOLUTION, 2019, 3 (06) : 919 - 927