IST-PTEPN: an improved pedestrian trajectory and endpoint prediction network based on spatio-temporal information

被引:5
作者
Yang, Xin [1 ]
Fan, Jiangfeng [1 ]
Xing, Siyuan [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Pedestrian trajectory prediction; Endpoint classifier; Transformer; GAN; ATTENTION;
D O I
10.1007/s13042-023-01889-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The prediction of pedestrian trajectories in complicated dynamic situations has garnered a great deal of interest among researchers and academics, and it plays a crucial role in numerous domains, including autonomous vehicles, intelligent robotics, and video surveillance. In this study, we offer the IST-PTEPN, a trainable and interpretable end-to-end model for predicting pedestrian trajectory. IST-PTEPN encodes the spatial and temporal characteristics of pedestrian trajectories and surrounding scenes with CNN and Transformer, then feeds the encoded vectors into Endpoint Classify CNN to generate predicted endpoints of the trajectories, and finally combines TCN and GAN to generate high-quality pedestrian trajectories. Experiments on two public datasets, ETH and UCY, demonstrate that our IST-PTEPN pedestrian trajectory prediction and endpoint prediction method outperforms the mainstream state-of-the-art methods.
引用
收藏
页码:4193 / 4206
页数:14
相关论文
共 40 条
[1]   Social LSTM: Human Trajectory Prediction in Crowded Spaces [J].
Alahi, Alexandre ;
Goel, Kratarth ;
Ramanathan, Vignesh ;
Robicquet, Alexandre ;
Li Fei-Fei ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :961-971
[2]   Deep image captioning using an ensemble of CNN and LSTM based deep neural networks [J].
Alzubi, Jafar A. ;
Jain, Rachna ;
Nagrath, Preeti ;
Satapathy, Suresh ;
Taneja, Soham ;
Gupta, Paras .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (04) :5761-5769
[3]   Dynamic Bicycle Dispatching of Dockless Public Bicycle-sharing Systems Using Multi-objective Reinforcement Learning [J].
Chen, Jianguo ;
Li, Kenli ;
Li, Keqin ;
Yu, Philip S. ;
Zeng, Zeng .
ACM TRANSACTIONS ON CYBER-PHYSICAL SYSTEMS, 2021, 5 (04)
[4]   Dynamic Planning of Bicycle Stations in Dockless Public Bicycle-sharing System Using Gated Graph Neural Network [J].
Chen, Jianguo ;
Li, Kenli ;
Li, Keqin ;
Yu, Philip S. ;
Zeng, Zeng .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2021, 12 (02)
[5]   A periodicity-based parallel time series prediction algorithm in cloud computing environments [J].
Chen, Jianguo ;
Li, Kenli ;
Rong, Huigui ;
Bilal, Kashif ;
Li, Keqin ;
Yu, Philip S. .
INFORMATION SCIENCES, 2019, 496 :506-537
[6]  
Deo Nachiket., 2017, 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), P1, DOI [DOI 10.1109/ITSC.2017.8317865, 10.1109/ITSC.2017.8317865]
[7]   Probabilistic Crowd GAN: Multimodal Pedestrian Trajectory Prediction Using a Graph Vehicle-Pedestrian Attention Network [J].
Eiffert, Stuart ;
Li, Kunming ;
Shan, Mao ;
Worrall, Stewart ;
Sukkarieh, Salah ;
Nebot, Eduardo .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) :5026-5033
[8]   Bayesian Human Motion Intentionality Prediction in urban environments [J].
Ferrer, Gonzalo ;
Sanfeliu, Alberto .
PATTERN RECOGNITION LETTERS, 2014, 44 :134-140
[9]   Transformer Networks for Trajectory Forecasting [J].
Giuliari, Francesco ;
Hasan, Irtiza ;
Cristani, Marco ;
Galasso, Fabio .
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, :10335-10342
[10]   Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks [J].
Gupta, Agrim ;
Johnson, Justin ;
Li Fei-Fei ;
Savarese, Silvio ;
Alahi, Alexandre .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2255-2264