Sasa-Satsuma type matrix integrable hierarchies and their Riemann-Hilbert problems and soliton solutions

被引:59
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Sch Math & Stat Sci, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
关键词
Matrix spectral problem; Group reduction; Integrable hierarchy; Riemann-Hilbert problem; Inverse scattering transform; Soliton solution; INVERSE SCATTERING; EQUATIONS;
D O I
10.1016/j.physd.2023.133672
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sasa-Satsuma type matrix integrable hierarchies are generated from taking two group reductions of replacing the spectral parameter with its complex conjugate and its negative in the matrix AKNS spectral problems. Based on the Lax pairs and the adjoint lax pairs, Riemann-Hilbert problems and thus inverse scattering transforms are formulated for the resulting Sasa-Satsuma type matrix integrable hierarchies, and their soliton solutions are generated from the associated reflectionless Riemann-Hilbert problems.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 56 条
[1]  
Ablowitz M., 2004, Discrete and Continuous Nonlinear Schrodinger Systems
[2]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[3]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[4]  
Ablowitz MJ, 1981, Solitons and the inverse scattering transform
[5]  
Belokolos ED, 1994, Algebro-geometric approach to nonlinear integrable equations
[6]  
Calogero F., 1982, Solitons and the Spectral Transform I
[7]   Multi-breather and high-order rogue waves for the nonlinear Schrodinger equation on the elliptic function background [J].
Feng, Bao-Feng ;
Ling, Liming ;
Takahashi, Daisuke A. .
STUDIES IN APPLIED MATHEMATICS, 2020, 144 (01) :46-101
[8]   Integrable multidimensional versions of the nonlocal nonlinear Schrodinger equation [J].
Fokas, A. S. .
NONLINEARITY, 2016, 29 (02) :319-324
[9]   The unified method: I. Nonlinearizable problems on the half-line [J].
Fokas, A. S. ;
Lenells, J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (19)
[10]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 95 (01) :1-3