Light-driven urea oxidation for a wearable artificial kidney

被引:3
作者
Vollenbroek, Jeroen C. [1 ,2 ]
Rodriguez, Ainoa Paradelo [3 ]
Mei, Bastian T. [3 ,4 ]
Mul, Guido [3 ]
Verhaar, Marianne C. [1 ]
Odijk, Mathieu [2 ]
Gerritsen, Karin G. F. [1 ]
机构
[1] UMC Utrecht, Nephrol & Hypertens Dept, Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands
[2] Univ Twente, MESA Inst, BIOS Lab Chip Grp, Hallenweg 15, NL-7522 NH Enschede, Netherlands
[3] Univ Twente, Photocatalyt Synth PCS Grp, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands
[4] Ruhr Univ Bochum, Ind Chem, Univ Str 150, D-44801 Bochum, Germany
关键词
Wearable artificial kidney; Photo-electrocatalysis; Selective urea oxidation; ELECTROCATALYTIC OXIDATION; HYDROGEN-PRODUCTION; NICKEL ELECTRODES; CATALYST; ELECTROLYSIS; PERFORMANCE; NI(OH)(2); MECHANISM; REMOVAL; NITRITE;
D O I
10.1016/j.cattod.2023.114163
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
For the development of a wearable artificial kidney (WAK) that uses a small dialysate volume that is continuously regenerated, it is essential that urea, one of the main uremic retention solutes, is removed. Despite advances in sorbent technology or electro-oxidation no safe, efficient and selective method for urea removal has been re-ported that allows miniaturization of the artificial kidney to wearable proportions. Here we have developed a flow cell for light-driven, photo-electrocatalytic (PEC) urea removal for use in a WAK. We use a photo-active material (hematite) coated with a catalyst (NiOOH) as working electrode for selective urea oxidation and a silver-chloride (AgCl) cathode. The use of the AgCl counter electrodes eliminates the need for an external bias voltage, and allows operation under light illumination only. Using LED illumination (460 nm) we show that urea is selectively oxidized over chloride. N-2 formation is confirmed by gas-phase analysis of the headspace of the sample vial, using mass spectrometry. Other nitrogen containing products include nitrite but importantly ammonia and nitrate are not detected. Using the PEC concept a urea removal rate of 2.5 mu mol/cm(2)h (or 0.15 mg/ cm(2)h) has been achieved. Extrapolating our results to an upscaled system, a surface area of 0.5 m(2) would enable efficient removal of the daily produced amount of urea (similar to 300 mmol) urea within 24 h, when driven by LED illumination only.
引用
收藏
页数:10
相关论文
共 54 条
  • [31] Strategies for optimizing urea removal to enable portable kidney dialysis: A reappraisal
    Shao, Guozheng
    Himmelfarb, Jonathan
    Hinds, Bruce J.
    [J]. ARTIFICIAL ORGANS, 2022, 46 (06) : 997 - 1011
  • [32] TiO2 Nanowires Based System for Urea Photodecomposition and Dialysate Regeneration
    Shao, Guozheng
    Zang, Yushi
    Hinds, Bruce J.
    [J]. ACS APPLIED NANO MATERIALS, 2019, 2 (10) : 6116 - +
  • [33] Advances in Catalytic Electrooxidation of Urea: A Review
    Singh, Ramesh K.
    Rajavelu, Kalaiyarasi
    Montag, Michael
    Schechter, Alex
    [J]. ENERGY TECHNOLOGY, 2021, 9 (08)
  • [34] Amorphous Ni(OH)2 @ three-dimensional Ni core-shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors
    Su, Yu-Zhi
    Xiao, Kang
    Li, Nan
    Liu, Zhao-Qing
    Qiao, Shi-Zhang
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (34) : 13845 - 13853
  • [35] Nickel-Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution
    Tatarchuk, Stephen W.
    Medvedev, Jury J.
    Li, Feng
    Tobolovskaya, Yulia
    Klinkova, Anna
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (39)
  • [36] Formation of a Ni(OH)2/NiOOH active redox couple on nickel nanowires for formaldehyde detection in alkaline media
    Trafela, Spela
    Zavasnik, Janez
    Sturm, Saso
    Rozman, Kristina Zuzek
    [J]. ELECTROCHIMICA ACTA, 2019, 309 : 346 - 353
  • [37] Enabling real-time detection of electrochemical desorption phenomena with sub-monolayer sensitivity
    Trimarco, Daniel B.
    Scott, Soren B.
    Thilsted, Anil H.
    Pan, Jesper Y.
    Pedersen, Thomas
    Hansen, Ole
    Chorkendorff, Ib
    Vesborg, Peter C. K.
    [J]. ELECTROCHIMICA ACTA, 2018, 268 : 520 - 530
  • [38] Fast and sensitive method for detecting volatile species in liquids
    Trimarco, Daniel B.
    Pedersen, Thomas
    Hansen, Ole
    Chorkendorff, Ib
    Vesborg, Peter C. K.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (07)
  • [39] Safety of electrooxidation for urea removal in a wearable artificial kidney is compromised by formation of glucose degradation products
    van Gelder, Maaike K.
    Vollenbroek, Jeroen C.
    Lentferink, Babette H.
    Hazenbrink, Dienty H. M.
    Besseling, Paul J.
    Simonis, Frank
    Giovanella, Silvia
    Ligabue, Giulia
    Bajo Rubio, Maria A.
    Cappelli, Gianni
    Joles, Jaap A.
    Verhaar, Marianne C.
    Gerritsen, Karin G. F.
    [J]. ARTIFICIAL ORGANS, 2021, 45 (11) : 1422 - 1428
  • [40] Urea removal strategies for dialysate regeneration in a wearable artificial kidney
    van Gelder, Maaike K.
    Jong, Jacobus A. W.
    Folkertsma, Laura
    Guo, Yong
    Bluchel, Christian
    Verhaar, Marianne C.
    Odijk, Mathieu
    Van Nostrum, Cornelus F.
    Hennink, Wim E.
    Gerritsen, Karin G. F.
    [J]. BIOMATERIALS, 2020, 234