Lightweight Stepless Super-Resolution of Remote Sensing Images via Saliency-Aware Dynamic Routing Strategy

被引:5
|
作者
Wu, Hanlin [1 ]
Ni, Ning [1 ]
Zhang, Libao [1 ]
机构
[1] Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Computational modeling; Feature extraction; Routing; Computational complexity; Task analysis; Superresolution; Interpolation; Lightweight; remote sensing; saliency analysis; stepless; super-resolution (SR); SPARSE REPRESENTATION; ATTENTION; ACCURATE; NETWORK;
D O I
10.1109/TGRS.2023.3236624
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep learning-based algorithms have greatly improved the performance of remote sensing image (RSI) super-resolution (SR). However, increasing network depth and parameters cause a huge burden of computing and storage. Directly reducing the depth or width of existing models results in a large performance drop. We observe that the SR difficulty of different regions in an RSI varies greatly, and existing methods use the same deep network to process all regions in an image, resulting in a waste of computing resources. In addition, existing SR methods generally predefine integer scale factors and cannot perform stepless SR, i.e., a single model can deal with any potential scale factor. Retraining the model on each scale factor wastes considerable computing resources and model storage space. To address the above problems, we propose a saliency-aware dynamic routing network (SalDRN) for lightweight and stepless SR of RSIs. First, we introduce visual saliency as an indicator of region-level SR difficulty and integrate a lightweight saliency detector into the SalDRN to capture pixel-level visual characteristics. Then, we devise a saliency-aware dynamic routing strategy that employs path selection switches to adaptively select feature extraction paths of appropriate depth according to the SR difficulty of subimage patches. Finally, we propose a novel lightweight stepless upsampling module whose core is an implicit feature function for realizing mapping from low-resolution feature space to high-resolution feature space. Comprehensive experiments verify that the SalDRN can achieve a good tradeoff between performance and complexity. The code is available at https://github.com/hanlinwu/SalDRN.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Lightweight Mars remote sensing image super-resolution reconstruction network
    Geng M.
    Wu F.
    Wang D.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (12): : 1487 - 1498
  • [42] Remote sensing images super-resolution with deep convolution networks
    Ran, Qiong
    Xu, Xiaodong
    Zhao, Shizhi
    Li, Wei
    Du, Qian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (13-14) : 8985 - 9001
  • [43] ViT-ISRGAN: A High-Quality Super-Resolution Reconstruction Method for Multispectral Remote Sensing Images
    Yang, Yifeng
    Zhao, Hengqian
    Huangfu, Xiadan
    Li, Zihan
    Wang, Pan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 3973 - 3988
  • [44] Super-Resolution for GaoFen-4 Remote Sensing Images
    Li, Feng
    Xin, Lei
    Guo, Yi
    Gao, Dongsheng
    Kong, Xianghao
    Jia, Xiuping
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (01) : 28 - 32
  • [45] Remote sensing image super-resolution via cross-scale hierarchical transformer
    Xiao, Yi
    Yuan, Qiangqiang
    He, Jiang
    Zhang, Liangpei
    GEO-SPATIAL INFORMATION SCIENCE, 2024, 27 (06) : 1914 - 1930
  • [46] Remote Sensing Image Super-Resolution via Multiscale Enhancement Network
    Wang, Yu
    Shao, Zhenfeng
    Lu, Tao
    Wu, Changzhi
    Wang, Jiaming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [47] A lightweight distillation CNN-transformer architecture for remote sensing image super-resolution
    Wang, Yu
    Shao, Zhenfeng
    Lu, Tao
    Liu, Lifeng
    Huang, Xiao
    Wang, Jiaming
    Jiang, Kui
    Zeng, Kangli
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (01) : 3560 - 3579
  • [48] SDNet: a lightweight ship detection network in remote sensing images by super-resolution enhancement and detail completion
    Tong, Yu
    Liu, Jun
    Cao, Guixing
    Li, Leyang
    Wang, Yufei
    EUROPEAN JOURNAL OF REMOTE SENSING, 2025, 58 (01)
  • [49] CNN based spectral super-resolution of remote sensing images
    Arun, P., V
    Buddhiraju, K. M.
    Porwal, A.
    Chanussot, J.
    SIGNAL PROCESSING, 2020, 169
  • [50] Lightweight remote sensing super-resolution with multi-scale graph attention network
    Wang, Yu
    Shao, Zhenfeng
    Lu, Tao
    Huang, Xiao
    Wang, Jiaming
    Zhang, Zhizheng
    Zuo, Xiaolong
    PATTERN RECOGNITION, 2025, 160