Stability for a weakly coupled wave equations with a boundary dissipation of fractional derivative type

被引:4
作者
Villagran, O. P. V. [1 ]
Nonato, C. A. [2 ]
Raposo, C. A. [3 ]
Ramos, A. J. A. [4 ]
机构
[1] Univ Tarapaca, Dept Math, Casilla 7D, Arica, Chile
[2] Univ Fed Bahia, Av Adhemar Barros S-N, BR-40170115 Salvador, BA, Brazil
[3] Univ Fed Sao Joao del Rei, Math Dept, Praca Frei Orlando 170, BR-36307352 Sao Joao Del Rei, MG, Brazil
[4] Fed Univ Para, Fac Math, Rua Raimundo Santana S-N, BR-68721000 Salinopolis, Para, Brazil
关键词
Semigroup theory; Waves coupled system; Polynomial stability; STABILIZATION;
D O I
10.1007/s12215-021-00703-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the stability for a weakly coupled wave equations with a boundary dissipation of fractional derivative type. We have proved well posedness and polynomial stability using the semigroup theory and a sharp result provided by Borichev and Tomilov.
引用
收藏
页码:803 / 831
页数:29
相关论文
共 24 条
  • [1] Indirect internal stabilization of weakly coupled evolution equations
    Alabau, F
    Cannarsa, P
    Komornik, V
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2002, 2 (02) : 127 - 150
  • [2] Indirect boundary stabilization of weakly coupled systems
    Alabau, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (11): : 1015 - 1020
  • [3] TAUBERIAN-THEOREMS AND STABILITY OF ONE-PARAMETER SEMIGROUPS
    ARENDT, W
    BATTY, CJK
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 306 (02) : 837 - 852
  • [4] On exact boundary controllability for linearly coupled wave equations
    Bastos, W. D.
    Spezamiglio, A.
    Raposo, C. A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) : 557 - 564
  • [5] Polynomial stability of operator semigroups
    Batkai, Andras
    Engel, Klaus-Jochen
    Pruess, Jan
    Schnaubelt, Roland
    [J]. MATHEMATISCHE NACHRICHTEN, 2006, 279 (13-14) : 1425 - 1440
  • [6] Optimal polynomial decay of functions and operator semigroups
    Borichev, Alexander
    Tomilov, Yuri
    [J]. MATHEMATISCHE ANNALEN, 2010, 347 (02) : 455 - 478
  • [7] Boyadjiev L., 2005, Int. J. Math. Math. Sci, V2005, P1577
  • [8] LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2
    CAPUTO, M
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05): : 529 - &
  • [9] FRACTIONAL ORDER VOLTERRA-EQUATIONS WITH APPLICATIONS TO ELASTICITY
    CHOI, UJ
    MACCAMY, RC
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 139 (02) : 448 - 464
  • [10] Kilbas A., 2002, 2 APPL ANAL, VI, P435