Numerical Studies on Thermal and Hydrodynamic Characteristics of LNG in Helically Coiled Tube-in-Tube Heat Exchangers

被引:0
|
作者
Yan, Fayi [1 ]
Pei, Xuejian [1 ]
Lu, He [1 ]
Zong, Shuzhen [1 ]
机构
[1] Shandong Jianzhu Univ, Sch Mech & Elect Engn, Jinan 250101, Peoples R China
来源
FRONTIERS IN HEAT AND MASS TRANSFER | 2024年 / 22卷 / 01期
关键词
HCTT heat exchanger; LNG; helically coil; heat transfer coefficient; pressure drop; PRESSURE-DROP; 2-PHASE FLOW; PERFORMANCE; MODEL;
D O I
10.32604/fhmt.2023.045038
中图分类号
O414.1 [热力学];
学科分类号
摘要
As compact and efficient heat exchange equipment, helically coiled tube-in-tube heat exchangers (HCTT heat exchangers) are widely used in many industrial processes. However, the thermal-hydraulic research of liquefied natural gas (LNG) as the working fluid in HCTT heat exchangers is rarely reported. In this paper, the characteristics of HCTT heat exchangers, in which LNG flows in the inner tube and ethylene glycol-water solution flows in the outer tube, are studied by numerical simulations. The influences of heat transfer characteristics and pressure drops of the HCTT heat transfers are studied by changing the initial flow velocity, the helical middle diameter, and the helical pitch. The results indicate that different initial flow velocities in the inner tube and the outer tube of the HCTT heat exchanger have little influence on the secondary flow of the fluid in the helical tubes, and the overall flow characteristics tend to be stable. The smaller helical middle diameter of the HCTT heat exchanger leads to the shorter fluid flow length, the smaller resistance along the tubes and the increase of initial pressure under the condition of constant inlet velocity, which promotes the occurrence of secondary flow. The axial flow of fluid promotes the destruction of heat transfer boundary layer and gains strength of the turbulence and heat transfer efficiency. With the increase of the helical pitch of the HCTT heat exchanger, the turbulent intensity and the heat transfer efficiency are also increased. Moreover, the improvement of the flow state of the HCTT exchanger in a longer helical pitch also enhances the heat exchange efficiency.
引用
收藏
页码:287 / 304
页数:18
相关论文
共 50 条
  • [1] Numerical Simulation of Liquified Natural Gas Boiling Heat Transfer Characteristics in Helically Coiled Tube-in-Tube Heat Exchangers
    Yan, Fayi
    Lu, He
    Feng, Shijie
    FRONTIERS IN HEAT AND MASS TRANSFER, 2024, 22 (05): : 1493 - 1514
  • [2] A comprehensive second law analysis for tube-in-tube helically coiled heat exchangers
    Dizaji, Hamed Sadighi
    Khalilarya, Shahram
    Jafarmadar, Samad
    Hashemian, Mehran
    Khezri, Mohammad
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2016, 76 : 118 - 125
  • [3] Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers
    Aly, Wael I. A.
    ENERGY CONVERSION AND MANAGEMENT, 2014, 79 : 304 - 316
  • [4] EXPERIMENTAL STUDY OF THE THERMAL PERFORMANCE OF CORRUGATED HELICALLY COILED TUBE-IN-TUBE HEAT EXCHANGER
    Al-Gburi, Hussein
    Mohammed, Akeel Abbas
    Al-Abbas, Audai Hussein
    FRONTIERS IN HEAT AND MASS TRANSFER, 2023, 20
  • [5] Numerical investigation of vertical helically coiled tube heat exchangers thermal performance
    Mirgolbabaei, Hessam
    APPLIED THERMAL ENGINEERING, 2018, 136 : 252 - 259
  • [6] Evaporation heat transfer and pressure drop of HFC-134a in a helically coiled concentric tube-in-tube heat exchanger
    Wongwises, S
    Polsongkram, M
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (3-4) : 658 - 670
  • [7] Condensation heat transfer and pressure drop of HFC-134a in a helically coiled concentric tube-in-tube heat exchanger
    Wongwises, Somchai
    Polsongkram, Maitree
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (23-24) : 4386 - 4398
  • [8] Numerical investigation of heat transfer intensification in shell and helically coiled finned tube heat exchangers and design optimization
    Alimoradi, Ashkan
    Olfati, Mohammad
    Maghareh, Meysam
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2017, 121 : 125 - 143
  • [9] Fabrication method and thermal-frictional behavior of a tube-in-tube helically coiled heat exchanger which contains turbulator
    Mashoofi, Nemat
    Pesteei, Seyed Mehdi
    Moosavi, Amin
    Dizaji, Hamed Sadighi
    APPLIED THERMAL ENGINEERING, 2017, 111 : 1008 - 1015
  • [10] Single-phase flow heat transfer characteristics in helically coiled tube heat exchangers
    Akgul, Dogan
    Kirkar, Safak Metin
    Onal, Busra Selenay
    Celen, Ali
    Dalkilic, Ahmet Selim
    Wongwises, Somchai
    KERNTECHNIK, 2022, 87 (01) : 1 - 25