DISCOVER: 2-D multiview summarization of Optical Coherence Tomography Angiography for automatic diabetic retinopathy diagnosis

被引:5
作者
Daho, Mostafa El Habib [1 ,2 ]
Li, Yihao [1 ,2 ]
Zeghlache, Rachid [1 ,2 ]
Le Boite, Hugo [3 ,4 ]
Deman, Pierre [5 ,6 ]
Borderie, Laurent [4 ,6 ]
Ren, Hugang [7 ]
Mannivanan, Niranchana [7 ]
Lepicard, Capucine [4 ]
Cochener, Beatrice [1 ,2 ,8 ]
Couturier, Aude [4 ]
Tadayoni, Ramin [4 ,9 ]
Conze, Pierre-Henri [2 ,10 ]
Lamard, Mathieu [1 ,2 ]
Quellec, Gwenole [2 ,11 ]
机构
[1] Univ Bretagne Occidentale, F-29200 Brest, France
[2] INSERM, UMR 1101, F-29200 Brest, France
[3] Sorbonne Univ, F-75006 Paris, France
[4] Hop Lariboisiere, APHP, Serv Ophtalmol, F-75475 Paris, France
[5] ADCIS, F-14280 St Contest, France
[6] Evolucare Technol, F-78230 Le Pecq, France
[7] Carl Zeiss Meditec, Dublin, CA 94568 USA
[8] CHRU Brest, Serv Ophtalmol, F-29200 Brest, France
[9] Cite Univ, F-75006 Paris, France
[10] IMT Atlantique, F-29200 Brest, France
[11] IBRBS, LaTIM, 22 Ave Camille Desmoulins, F-29200 Brest, France
关键词
Diabetic retinopathy; Optical Coherence Tomography Angiography; (OCTA); Deep learning; Interpretability; HUMAN RETINA; SEGMENTATION; NETWORK; VISUALIZATION; PREVALENCE; 3D;
D O I
10.1016/j.artmed.2024.102803
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diabetic Retinopathy (DR), an ocular complication of diabetes, is a leading cause of blindness worldwide. Traditionally, DR is monitored using Color Fundus Photography (CFP), a widespread 2-D imaging modality. However, DR classifications based on CFP have poor predictive power, resulting in suboptimal DR management. Optical Coherence Tomography Angiography (OCTA) is a recent 3-D imaging modality offering enhanced structural and functional information (blood flow) with a wider field of view. This paper investigates automatic DR severity assessment using 3-D OCTA. A straightforward solution to this task is a 3-D neural network classifier. However, 3-D architectures have numerous parameters and typically require many training samples. A lighter solution consists in using 2-D neural network classifiers processing 2-D en -face (or frontal) projections and/or 2-D cross-sectional slices. Such an approach mimics the way ophthalmologists analyze OCTA acquisitions: (1) en -face flow maps are often used to detect avascular zones and neovascularization, and (2) cross-sectional slices are commonly analyzed to detect macular edemas, for instance. However, arbitrary data reduction or selection might result in information loss. Two complementary strategies are thus proposed to optimally summarize OCTA volumes with 2-D images: (1) a parametric en -face projection optimized through deep learning and (2) a cross-sectional slice selection process controlled through gradient -based attribution. The full summarization and DR classification pipeline is trained from end to end. The automatic 2-D summary can be displayed in a viewer or printed in a report to support the decision. We show that the proposed 2-D summarization and classification pipeline outperforms direct 3-D classification with the advantage of improved interpretability.
引用
收藏
页数:17
相关论文
共 69 条
  • [1] Multiclass Classification Performance Curve
    Aguilar-Ruiz, Jesus S.
    Michalak, Marcin
    [J]. IEEE ACCESS, 2022, 10 : 68915 - 68921
  • [2] Supervised Machine Learning Based Multi-Task Artificial Intelligence Classification of Retinopathies
    Alam, Minhaj
    Le, David
    Lim, Jennifer, I
    Chan, Robison V. P.
    Yao, Xincheng
    [J]. JOURNAL OF CLINICAL MEDICINE, 2019, 8 (06)
  • [3] DR Detection Using Optical Coherence Tomography Angiography (OCTA): A Transfer Learning Approach with Robustness Analysis
    Andreeva, Rayna
    Fontanella, Alessandro
    Giarratano, Ylenia
    Bernabeu, Miguel O.
    [J]. OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2020, 2020, 12069 : 11 - 20
  • [4] [Anonymous], 1991, OPHTHALMOLOGY, V98, P823
  • [5] On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
    Bach, Sebastian
    Binder, Alexander
    Montavon, Gregoire
    Klauschen, Frederick
    Mueller, Klaus-Robert
    Samek, Wojciech
    [J]. PLOS ONE, 2015, 10 (07):
  • [6] Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT
    Baumann, Bernhard
    Potsaid, Benjamin
    Kraus, Martin F.
    Liu, Jonathan J.
    Huang, David
    Hornegger, Joachim
    Cable, Alex E.
    Duker, Jay S.
    Fujimoto, James G.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2011, 2 (06): : 1539 - 1552
  • [7] Radiomics-Based Assessment of OCT Angiography Images for Diabetic Retinopathy Diagnosis
    Carrera-Escale, Laura
    Benali, Anass
    Rathert, Ann-Christin
    Martin-Pinardel, Ruben
    Bernal-Morales, Carolina
    Ale-Chilet, Anibal
    Barraso, Marina
    Marin-Martinez, Sara
    Feu-Basilio, Silvia
    Rosines-Fonoll, Josep
    Hernandez, Teresa
    Vila, Irene
    Castro-Dominguez, Rafael
    Oliva, Cristian
    Vinagre, Irene
    Ortega, Emilio
    Gimenez, Marga
    Vellido, Alfredo
    Romero, Enrique
    Zarranz-Ventura, Javier
    [J]. OPHTHALMOLOGY SCIENCE, 2023, 3 (02):
  • [8] David M, 1969, P S TREATM DIAB RET, P1890
  • [9] Fei BW, 2006, 2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, P40
  • [10] High-throughput widefield fluorescence imaging of 3D samples using deep learning for 2D projection image restoration
    Forsgren, Edvin
    Edlund, Christoffer
    Oliver, Miniver
    Barnes, Kalpana
    Sjogren, Rickard
    Jackson, Timothy R.
    [J]. PLOS ONE, 2022, 17 (05):