Polar aprotic solvent properties influence pulp characteristics and delignification kinetics of CO2/Organic base organosolv pretreatments of lignocellulosic biomass

被引:2
作者
Agwu, Kelechi A. [1 ]
Belmont, S. Rae [1 ]
Enguita, Jayna M. [1 ]
Sheehan, James D. [1 ]
机构
[1] Univ Alabama, Dept Chem & Biol Engn, Tuscaloosa, AL 35401 USA
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
Organosolv; Lignocellulosic biomass; Biorefining; Polar aprotic solvents; Kinetic modeling; Delignification; ATMOSPHERIC-PRESSURE; ENZYMATIC-HYDROLYSIS; SUGARCANE BAGASSE; WHEAT-STRAW; LIGNIN; SOLVOLYSIS; HARDWOOD;
D O I
10.1016/j.ces.2024.119808
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In the present study, polar aprotic solvents (e.g., dimethylimidazolidinone (DMI), sulfolane (SUL), dimethylsulfoxide (DMSO)) and organic bases with low vapor pressures are evaluated for the organosolv processing of lodgepole pine. Carbon dioxide (CO2) is also evaluated as a pulping additive. Under mild conditions (150-200 degrees C, 2-10 bar), appreciable delignification (80-85 wt%) is observed within 60 min for all solvent candidates. Amongst the solvent candidates, DMSO promotes the highest delignification (similar to 85 wt%), albeit at the cost of low pulp yields (similar to 0.3 g/g). SUL organosolv facilitates comparable delignification (similar to 80 wt%) while maintaining high yields of pulp (similar to 0.6 g/g). Solvent speciation impacts morphological characteristics of the residual pulps as DMI and SUL pulps consist of bundled fibrous structures whereas DMSO pulps comprise randomly oriented strains. A first-order, kinetic model is applied to quantify delignification kinetics and demonstrates that solvents with high dielectric constants and low molar volumes readily facilitate delignification.
引用
收藏
页数:11
相关论文
共 56 条
  • [1] Switchable Ionic Liquids as Delignification Solvents for Lignocellulosic Materials
    Anugwom, Ikenna
    Eta, Valerie
    Virtanen, Pasi
    Maki-Arvela, Paivi
    Hedenstrom, Mattias
    Hummel, Michael
    Sixta, Herbert
    Mikkola, Jyri-Pekka
    [J]. CHEMSUSCHEM, 2014, 7 (04) : 1170 - 1176
  • [2] Switchable Ionic liquids (SILs) based on glycerol and acid gases
    Anugwom, Ikenna
    Maki-Arvela, Paivi
    Virtanen, Pasi
    Damlin, Pia
    Sjoholm, Rainer
    Mikkola, Jyri-Pekka
    [J]. RSC ADVANCES, 2011, 1 (03) : 452 - 457
  • [3] Bajpai P., 2015, Green Chem. Sustain. Pulp Pap. Ind, P1, DOI DOI 10.1007/978-3-319-18744-0
  • [4] Bajpai P, 2023, Environmentally Benign Pulping, P23, DOI [10.1007/978-3-031-23693-8_3, DOI 10.1007/978-3-031-23693-8_3]
  • [5] Emission and odour control in Kraft pulp mills
    Bordado, JCM
    Gomes, JFP
    [J]. JOURNAL OF CLEANER PRODUCTION, 2003, 11 (07) : 797 - 801
  • [6] Organosolv Processes
    Brosse, Nicolas
    Hussin, Mohd Hazwan
    Rahim, Afidah Abdul
    [J]. BIOREFINERIES, 2019, 166 : 153 - 176
  • [7] Cheng F, 2023, GREEN CHEM, V25, P336, DOI [10.1039/D2GC03446H, 10.1039/d2gc03446h]
  • [8] Couling DJ, 2006, GREEN CHEM, V8, P82, DOI [10.1039/b511333d, 10.1039/B511333D]
  • [9] Smart sustainable biorefineries for lignocellulosic biomass
    Culaba, Alvin B.
    Mayol, Andres Philip
    Juan, Jayne Lois G. San
    Vinoya, Carlo L.
    Concepcion, Ronnie S., II
    Bandala, Argel A.
    Vicerra, Ryan Rhay P.
    Ubando, Aristotle T.
    Chen, Wei-Hsin
    Chang, Jo-Shu
    [J]. BIORESOURCE TECHNOLOGY, 2022, 344
  • [10] Dreyfus H., 1936, Patent, Patent No. [2,042,705, 2042705]