WEAK SOLVABILITY OF NONLINEAR ELLIPTIC EQUATIONS INVOLVING VARIABLE EXPONENTS

被引:7
作者
Aberqi, Ahmed [1 ]
Bennouna, Jaouad [2 ]
Benslimane, Omar [2 ]
Ragusa, Maria Alessandra [3 ,4 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Lab LAMA, Natl Sch Appl Sci, Fes, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Lab LAMA, Dept Math, Fac Sci Dhar El Mahraz, BP 1796 Atlas Fez, Fez, France
[3] Univ Catania, Dipartimento Matemat & Informat, Catania, Italy
[4] RUDN Univ, 6 Miklukho Maklay St, Moscow 117198, Russia
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2023年 / 16卷 / 06期
关键词
Laplacian; elliptic equation; non-trivial solutions; Cerami sequences; Sobolev-Orlicz Riemannian manifold with variable exponents; EXISTENCE; UNIQUENESS;
D O I
10.3934/dcdss.2022105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the study of the existence and multiplicity of solutions for Dirichlet boundary value problems, involving the (p(m); q(m))-equation and the nonlinearity is superlinear but does not fulfil the Ambrossetti-Rabinowitz condition in the framework of Sobolev spaces with variable exponents in a complete manifold. The main results are proved using the mountain pass theorem and Fountain theorem with Cerami sequences. Moreover, an example of a (p(m); q(m)) equation that highlights the applicability of our theoretical results is also provided.
引用
收藏
页码:1142 / 1157
页数:16
相关论文
共 32 条
[1]   Existence and uniqueness of a renormalized solution of parabolic problems in Orlicz spaces [J].
Abercji, A. ;
Bennouna, J. ;
Elmassoudi, M. ;
Hammoumi, M. .
MONATSHEFTE FUR MATHEMATIK, 2019, 189 (02) :195-219
[2]   Nonlinear parabolic inequalities with lower order terms [J].
Aberqi, A. ;
Bennouna, J. ;
Mekkour, M. ;
Redwane, H. .
APPLICABLE ANALYSIS, 2017, 96 (12) :2102-2117
[3]   Existence Results for Double Phase Problem in Sobolev-Orlicz Spaces with Variable Exponents in Complete Manifold [J].
Aberqi, Ahmed ;
Bennouna, Jaouad ;
Benslimane, Omar ;
Ragusa, Maria Alessandra .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
[4]   On a new fractional Sobolev space with variable exponent on complete manifolds [J].
Aberqi, Ahmed ;
Benslimane, Omar ;
Ouaziz, Abdesslam ;
Repovs, Dusan D. .
BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
[5]  
[Anonymous], 2004, Appl Math, DOI DOI 10.1007/S10492-004-6432-8
[6]  
[Anonymous], 1968, Ann. Sc. Norm. Super. Pisa, Cl. Sci.
[7]  
Aubin T, 1982, NONLINEAR ANAL MANIF, V252
[8]   ON A NONLOCAL PROBLEM INVOLVING THE FRACTIONAL p(x, .)-LAPLACIAN SATISFYING CERAMI CONDITION [J].
Azroul, Elhoussine ;
Benkirane, Abdelmoujib ;
Shimi, Mohammed .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (10) :3479-3495
[9]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[10]  
Benslimane O., 2021, ARAB J MATH SCI, DOI DOI 10.1108/AJMS-12-2020-0133