ASYMPTOTIC PROFILES OF THE STEADY STATE FOR A DIFFUSIVE SIS EPIDEMIC MODEL WITH DIRICHLET BOUNDARY CONDITIONS

被引:0
作者
Deng, Keng [1 ]
机构
[1] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
关键词
Diffusive SIS epidemic model; spatial heterogeneity; Dirichlet bound-ary conditions; endemic equilibrium; asymptotic profile;
D O I
10.3934/cpaa.2023129
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a spatial SIS reaction-diffusion model with Dirichlet boundary conditions. We study the asymptotic profiles of the endemic equilibrium for small and large diffusion rates of the susceptible individuals and the infected individuals. Compared to a similar model with Neumann boundary conditions, our results indicate that the hostile exterior environment makes a distinct impact on the spread of infectious diseases.
引用
收藏
页码:80 / 87
页数:8
相关论文
共 11 条
[1]  
Adams R.A., 2003, Pure and Applied Mathematics (Amsterdam), V140
[2]  
Allen LJS, 2008, DISCRETE CONT DYN-A, V21, P1
[3]  
Cantrell R. S., 2003, Spatial ecology via reaction-diffusion equations
[4]  
Hess P., 1980, Comm Partial Differ Equ, V5, P999, DOI DOI 10.1080/03605308008820162
[5]   DYNAMICS OF AN SIS REACTION-DIFFUSION EPIDEMIC MODEL FOR DISEASE TRANSMISSION [J].
Huang, Wenzhang ;
Han, Maoan ;
Liu, Kaiyu .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (01) :51-66
[6]   Evolution of a semilinear parabolic system for migration and selection without dominance [J].
Lou, Yuan ;
Nagylaki, Thomas .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 225 (02) :624-665
[7]   Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: Effects of epidemic risk and population movement [J].
Peng, Rui ;
Yi, Fengqi .
PHYSICA D-NONLINEAR PHENOMENA, 2013, 259 :8-25
[8]   A reaction-diffusion SIS epidemic model in a time-periodic environment [J].
Peng, Rui ;
Zhao, Xiao-Qiang .
NONLINEARITY, 2012, 25 (05) :1451-1471
[9]   Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Part I [J].
Peng, Rui .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (04) :1096-1119
[10]   Global stability of the steady states of an SIS epidemic reaction-diffusion model [J].
Peng, Rui ;
Liu, Shengqiang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) :239-247