Vibration and Slope Conditions during Harvesting Affect Radish Mass Measurements for Yield Monitoring: An Experimental Study Using a Laboratory Test Bench

被引:1
作者
Kiraga, Shafik [1 ]
Reza, Md Nasim [2 ,3 ]
Chowdhury, Milon [4 ]
Gulandaz, Md Ashraffuzzaman [2 ,5 ]
Ali, Mohammod [3 ]
Kabir, Md Sazzadul [2 ]
Habineza, Eliezel [2 ]
Kabir, Md Shaha Nur [3 ,6 ]
Chung, Sun-Ok [2 ,3 ]
机构
[1] Washington State Univ, Ctr Precis & Automated Agr Syst, Irrigated Agr Res & Extens Ctr, Prosser, WA 99350 USA
[2] Chungnam Natl Univ, Grad Sch, Dept Smart Agr Syst, Daejeon 34134, South Korea
[3] Chungnam Natl Univ, Grad Sch, Dept Agr Machinery Engn, Daejeon 34134, South Korea
[4] Ohio State Univ, Agr Tech Inst, Div Hort Technol, Wooster, OH 44691 USA
[5] Bangladesh Agr Res Inst, Farm Machinery & Postharvest Proc Engn Div, Gazipur 1701, Bangladesh
[6] Hajee Mohammad Danesh Sci & Technol Univ, Fac Engn, Dept Agr Ind Engn, Dinajpur 5200, Bangladesh
关键词
precision agriculture; radish; yield monitoring; impact plate; field slope; field vibration; LOAD CELL RESPONSE; DYNAMIC COMPENSATION; SENSOR; GRAIN; ACCURACY; FILTERS;
D O I
10.3390/s23249744
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Site-specific measurements of the crop yield during harvesting are essential for successfully implementing precision management techniques. This study aimed to estimate the mass of radish tubers using the impact principle under simulated vibration and sloped-field harvesting conditions with a laboratory test bench. These conditions included the conveyor speed (CS), impact plate layout (IP), falling height onto the impact plate (FH), the plate angle relative to the horizontal (PH), the field slope, and the vibration of the harvesting machine. Two layouts of impact-type sensors were fabricated and tested, one with a single load cell (SL) and the other with two load cells (DL). An adjustable slope platform and a vibration table equipped with vibration blades were utilized to simulate the slope and vibration effects, respectively. Calibrations were conducted to verify the accuracy of the sensor outputs, processed with the finite impulse response and moving average filters. Radish mass was estimated using an asymmetrically trimmed mean method. The relative percentage error (RE), standard error (SE), coefficient of determination (R-2), and analysis of variance (ANOVA) were used to assess the impact plate performance. The results indicated that the SE for both impact plates was less than 4 g in the absence of vibration and slope conditions. The R2 for the single and double impact plates ranged from 0.58 to 0.89 and 0.69 to 0.81, respectively. The FH had no significant impact, while the PH significantly affected the mass measurements for both impact plates. On the other hand, the CS significantly affected the plate performance, except for the double-load-cell impact plate. Both vibration and slope affected the mass measurements, with RE values of 9.89% and 13.92%, respectively. The RE for filtered radish signals was reduced from 9.13% to 5.42%. The tests demonstrated the feasibility of utilizing the impact principle to assess the mass of radishes, opening up possibilities for the development of yield-monitoring systems for crops harvested in a similar manner.
引用
收藏
页数:19
相关论文
共 33 条
[1]  
Boo Chang Guk, 2020, [Journal of the Korean Society of Food Science and Nutrition, 한국식품영양과학회지], V49, P1407, DOI 10.3746/jkfn.2020.49.12.1407
[2]   Model-based dynamic compensation of load cell response in weighing machines affected by environmental vibrations [J].
Boschetti, Giovanni ;
Caracciolo, Roberto ;
Richiedei, Dario ;
Trevisani, Alberto .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 34 (1-2) :116-130
[3]   Analysis of Overturning and Vibration during Field Operation of a Tractor-Mounted 4-Row Radish Collector toward Ensuring User Safety [J].
Chowdhury, Milon ;
Islam, Ms Nafiul ;
Iqbal, Md Zafar ;
Islam, Sumaiya ;
Lee, Dae-Hyun ;
Kim, Dae-Geon ;
Jun, Hyeon-Jong ;
Chung, Sun-Ok .
MACHINES, 2020, 8 (04) :1-14
[4]  
Chung SO, 2006, T ASABE, V49, P5, DOI 10.13031/2013.20229
[5]  
Chung Sun-Ok, 2016, Journal of Biosystems Engineering, V41, P408, DOI 10.5307/jbe.2016.41.4.408
[6]   Measuring Mass Flow by Bounce Plate for Yield Mapping of Potatoes [J].
Detlef Ehlert .
Precision Agriculture, 2000, 2 (2) :119-130
[7]  
Ehsani R, 2010, LANDBAUFORSCH-VTI AG, V340, P31
[8]  
El-Desuki M., 2005, Journal of Agronomy, V4, P225
[9]  
Fravel J.B., 2013, Development and Testing of an Impact Plate Yield Monitor for Peanuts, P1
[10]  
Fulton JP, 2009, APPL ENG AGRIC, V25, P15