Federated singular value decomposition for high-dimensional data

被引:4
作者
Hartebrodt, Anne [1 ,2 ]
Rottger, Richard [1 ]
Blumenthal, David B. [2 ]
机构
[1] Univ Southern Denmark, Dept Math & Comp Sci, Campusvej 55, DK-5230 Odense, Denmark
[2] Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Artificial Intelligence Biomed Engn AIBE, Werner von Siemens Str 61, D-91052 Erlangen, Germany
关键词
Singular value decomposition; Federated learning; Principal component analysis; Genome-wide association studies; PRINCIPAL-COMPONENT ANALYSIS; ALGORITHMS;
D O I
10.1007/s10618-023-00983-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning (FL) is emerging as a privacy-aware alternative to classical cloud-based machine learning. In FL, the sensitive data remains in data silos and only aggregated parameters are exchanged. Hospitals and research institutions which are not willing to share their data can join a federated study without breaching confidentiality. In addition to the extreme sensitivity of biomedical data, the high dimensionality poses a challenge in the context of federated genome-wide association studies (GWAS). In this article, we present a federated singular value decomposition algorithm, suitable for the privacy-related and computational requirements of GWAS. Notably, the algorithm has a transmission cost independent of the number of samples and is only weakly dependent on the number of features, because the singular vectors corresponding to the samples are never exchanged and the vectors associated with the features are only transmitted to an aggregator for a fixed number of iterations. Although motivated by GWAS, the algorithm is generically applicable for both horizontally and vertically partitioned data.
引用
收藏
页码:938 / 975
页数:38
相关论文
共 61 条
[1]  
Al-Rubaie M, 2017, 2017 IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING, P280, DOI 10.1109/DESEC.2017.8073817
[2]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[3]  
[Anonymous], 2021, arXiv
[4]  
Asi Hilal, 2020, ADV NEURAL INFORM PR, V33, P14106
[5]  
Balcan Maria-Florina, 2016, P 29 C LEARN THEOR C, P284
[6]  
Balcan Maria-Florina, 2014, Advances in Neural Information Processing Systems, V27
[7]  
Benz A, 2022, OPEN PROBLEMS MULTIM
[8]  
Chai D, 2021, ARXIV
[9]  
Chaudhuri K, 2013, J MACH LEARN RES, V14, P2905
[10]   An Empirical Study of Training Self-Supervised Vision Transformers [J].
Chen, Xinlei ;
Xie, Saining ;
He, Kaiming .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9620-9629