Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence

被引:0
作者
Lopez, Brenda Sofia Sanchez [1 ]
Nolberto, Daniela Candioti [1 ]
Gutierrez, Jose Antonio Taquia [1 ,2 ]
Lopez, Yvan Garcia [1 ,2 ]
机构
[1] Univ Lima, Santiago De Surco, Peru
[2] Univ Lima, Inst Invest Cient, Santiago De Surco, Peru
来源
COMPUTACION Y SISTEMAS | 2023年 / 27卷 / 03期
关键词
Dengue outbreak; machine learning; SVM; classification;
D O I
10.13053/CyS-27-3-4383
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The dengue virus has become an increasingly critical problem for humanity due to its extensive spread. This is transmitted through a vector that sprouts in certain climatic conditions (tropical and subtropical climates). The transmission of the disease can be associated with certain climatic variables that reinforce the outbreak. Data were collected on dengue cases by epidemiological week registered in Loreto-Peru from January 1, 2016, to January 31, 2022. Likewise, data on meteorological variables (maximum and minimum temperature; dry and humid bulb temperature; wind speed and total precipitation in the area). In this study, four Machine learning modeling techniques were considered: Support Vector Machine (SVM), Decision Tree, Random Forest and AdaBoost; and the parameters defined to evaluate the models are: Accuracy, Precision, Recall and F-1. As a result, optimal AUC values were obtained in a range from 0.818 to 0.996 for the SVM, Random Forest and AdaBoost algorithms, likewise, in all weather stations the ROC curve showed good performance for all models, except for the Decision Tree algorithm. As a conclusion for this study, we propose the optimal model to associate dengue cases with climatic conditions is SVM.
引用
收藏
页码:769 / 777
页数:9
相关论文
共 33 条
  • [1] Weekly dengue forecasts in Iquitos, Peru; San Juan, Puerto Rico; and Singapore
    Benedum, Corey M.
    Shea, Kimberly M.
    Jenkins, Helen E.
    Kim, Louis Y.
    Markuzon, Natasha
    [J]. PLOS NEGLECTED TROPICAL DISEASES, 2020, 14 (10): : 1 - 26
  • [2] Cabezas César, 2015, Rev. perú. med. exp. salud publica, V32, P146
  • [3] Machine learning methods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan Manila, Philippines
    Carvajal, Thaddeus M.
    Viacrusis, Katherine M.
    Hernandez, Lara Fides T.
    Ho, Howell T.
    Amalin, Divina M.
    Watanabe, Kozo
    [J]. BMC INFECTIOUS DISEASES, 2018, 18
  • [4] Centro Nacional de Epidemiologia Prevencion y Control de Enfermedades, 2022, Sala virtual de situacion de salud
  • [5] Centro Nacional de Epidemiologia Prevencion y Control de Enfermedades, 2020, Direccion general de epidemiologia, casos de dengue en el Peru hasta la SE 13 -2020
  • [6] Community detection using unsupervised machine learning techniques on COVID-19 dataset
    Chaudhary, Laxmi
    Singh, Buddha
    [J]. SOCIAL NETWORK ANALYSIS AND MINING, 2021, 11 (01)
  • [7] Disease Prediction by Machine Learning Over Big Data From Healthcare Communities
    Chen, Min
    Hao, Yixue
    Hwang, Kai
    Wang, Lu
    Wang, Lin
    [J]. IEEE ACCESS, 2017, 5 : 8869 - 8879
  • [8] Curioso Walter H., 2020, Rev. perú. med. exp. salud publica, V37, P554, DOI 10.17843/rpmesp.2020.373.5585
  • [9] Fatima A., 2012, International Journal of engineering & Technology, V2, P521
  • [10] Garcia Nuno M., 2020, CSAI 2020: Proceedings of the 2020 4th International Conference on Computer Science and Artificial Intelligence, P74, DOI 10.1145/3445815.3445828