Prediction of the Potential Distribution of Drosophila suzukii on Madeira Island Using the Maximum Entropy Modeling

被引:7
|
作者
Macedo, Fabricio Lopes [1 ,2 ]
Ragonezi, Carla [1 ,2 ,3 ]
Reis, Fabio [1 ]
de Freitas, Jose G. R. [1 ]
Lopes, David Horta [4 ]
Aguiar, Antonio Miguel Franquinho [5 ]
Cravo, Delia [5 ]
de Carvalho, Miguel A. A. Pinheiro [1 ,2 ,3 ]
机构
[1] Univ Madeira, ISOPlexis Ctr Sustainable Agr & Food Technol, Campus Penteada, P-9020105 Funchal, Portugal
[2] Univ Tras Os Montes & Alto Douro, Capac Bldg & Sustainabil Agrifood Prod, Ctr Res & Technol Agroenvironm & Biol Sci CITAB, Inov4Agro Inst Innovat, P-5000801 Vila Real, Portugal
[3] Univ Madeira, Fac Life Sci, Campus Univ Penteada, P-9020105 Funchal, Portugal
[4] Univ Acores Rua Capitao Joao Avila, CE3C Ctr Ecol Evolut & Environm Changes, P-9700042 Pico Da Urze, Angra Do Herois, Portugal
[5] Secretaria Reg Agr & Desenvolvimento Rural, Lab Qualidade Agr, Direcao Reg Agr, Caminho Municipal Caboucos 61, P-9135372 Camacha, Portugal
来源
AGRICULTURE-BASEL | 2023年 / 13卷 / 09期
关键词
habitat suitability; maximum entropy; ecological niche model; information system; modeling training; machine learning; Drosophilidae; DIPTERA DROSOPHILIDAE; SPECIES DISTRIBUTION; CLIMATE-CHANGE; IMPACTS; INVASION;
D O I
10.3390/agriculture13091764
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Drosophila suzukii is one of the main pests that attack soft-skinned fruits and cause significant economic damage worldwide. Madeira Island (Portugal) is already affected by this pest. The present work aimed to investigate the potential distribution of D. suzukii on Madeira Island to better understand the limits of its geographical distribution on the island using the Maximum Entropy modeling (MaxEnt). The resultant model provided by MaxEnt was rated as regular discrimination with the area under the curve (AUC, 0.7-0.8). Upon scrutinizing the environmental variables with the greatest impact on the distribution of D. suzukii, altitude emerged as the dominant contributor, with the highest percentage (71.2%). Additionally, elevations ranging from 0 to 500 m were identified as appropriate for the species distribution. With the results of the model, it becomes possible to understand/predict which locations will be most suitable for the establishment of the analyzed pest and could be further applied not only for D. suzukii but also for other species that hold the potential for substantial economic losses in this insular region.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Prediction of the global potential geographical distribution of Hylurgus ligniperda using a maximum entropy model
    Wu, Zhuojin
    Gao, Tai
    Luo, Youqing
    Shi, Juan
    FOREST ECOSYSTEMS, 2022, 9
  • [2] Maximum Entropy Modeling for the Prediction of Potential Plantation Distribution of Arabica coffee under the CMIP6 Mode in Yunnan, Southwest China
    Zhang, Shuo
    Liu, Biying
    Liu, Xiaogang
    Yuan, Qianfeng
    Xiao, Xiang
    Zhou, Ting
    ATMOSPHERE, 2022, 13 (11)
  • [3] Potential distribution of Mexican primates: modeling the ecological niche with the maximum entropy algorithm
    Vidal-Garcia, Francisca
    Carlos Serio-Silva, Juan
    PRIMATES, 2011, 52 (03) : 261 - 270
  • [4] Prediction of Droplet Size and Velocity Distribution in Spray Using Maximum Entropy Method
    Ommi, Fathollah
    Movahednejad, Ehsan
    Hosseinalipour, S. Mostafa
    Chen, Chien-Pin
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 1, PTS A-C, 2009, : 1009 - 1015
  • [5] PREDICTION OF POTENTIAL AND FUTURE DISTRIBUTION AREAS OF ANATOLIAN CHESNUT (CASTANEA SATIVA MILL.) BY USING MAXIMUM ENTROPY (MAXENT) MODELING DEPENDING ON CLIMATE CHANGE IN TURKEY
    Sarikaya, Ayse Gul
    Orucu, Omer K.
    INTERNATIONAL JOURNAL OF ECOSYSTEMS AND ECOLOGY SCIENCE-IJEES, 2019, 9 (04): : 699 - 708
  • [6] Prediction of Spray Droplet Size Distribution Based on Maximum Entropy
    Peng Y.
    Zhang H.
    He G.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (09): : 217 - 226
  • [7] Predictive Modeling and Mapping of Malayan Sun Bear (Helarctos malayanus) Distribution Using Maximum Entropy
    Nazeri, Mona
    Jusoff, Kamaruzaman
    Madani, Nima
    Mahmud, Ahmad Rodzi
    Bahman, Abdul Rani
    Kumar, Lalit
    PLOS ONE, 2012, 7 (10):
  • [8] Predicting the current potential and future world wide distribution of the onion maggot, Delia antiqua using maximum entropy ecological niche modeling
    Ning, Shuoying
    Wei, Jiufeng
    Feng, Jinian
    PLOS ONE, 2017, 12 (02):
  • [9] Modeling of PM2.5 concentration prediction with maximum entropy method
    He J.
    Liu Y.
    Li Y.
    Journal of Computational and Theoretical Nanoscience, 2016, 13 (03) : 1861 - 1864
  • [10] Using Maximum Entropy Modeling (MaxEnt) to predict future trends in the distribution of high altitude endemic insects in response to climate change
    Urbani, Fabrizia
    D'Alessandro, Paola
    Biondi, Maurizio
    BULLETIN OF INSECTOLOGY, 2017, 70 (02): : 189 - 200