RefSR-NeRF: Towards High Fidelity and Super Resolution View Synthesis

被引:20
作者
Huang, Xudong [1 ]
Li, Wei [1 ]
Hu, Jie [1 ]
Chen, Hanting [1 ]
Wang, Yunhe [1 ]
机构
[1] Huawei Noahs Ark Lab, Montreal, PQ, Canada
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2023年
关键词
D O I
10.1109/CVPR52729.2023.00797
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present Reference-guided Super-Resolution Neural Radiance Field (RefSR-NeRF) that extends NeRF to super resolution and photorealistic novel view synthesis. Despite NeRF's extraordinary success in the neural rendering field, it suffers from blur in high resolution rendering because its inherent multilayer perceptron struggles to learn high frequency details and incurs a computational explosion as resolution increases. Therefore, we propose RefSR-NeRF, an end-to-end framework that first learns a low resolution NeRF representation, and then reconstructs the high frequency details with the help of a high resolution reference image. We observe that simply introducing the pre-trained models from the literature tends to produce unsatisfied artifacts due to the divergence in the degradation model. To this end, we design a novel lightweight RefSR model to learn the inverse degradation process from NeRF renderings to target HR ones. Extensive experiments on multiple benchmarks demonstrate that our method exhibits an impressive trade-off among rendering quality, speed, and memory usage, outperforming or on par with NeRF and its variants while being 52x speedup with minor extra memory usage. Code will be available at: Mindspore and Pytorch
引用
收藏
页码:8244 / 8253
页数:10
相关论文
共 62 条
[1]   Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields [J].
Barron, Jonathan T. ;
Mildenhall, Ben ;
Verbin, Dor ;
Srinivasan, Pratul P. ;
Hedman, Peter .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :5460-5469
[2]   Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields [J].
Barron, Jonathan T. ;
Mildenhall, Ben ;
Tancik, Matthew ;
Hedman, Peter ;
Martin-Brualla, Ricardo ;
Srinivasan, Pratul P. .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :5835-5844
[3]  
Cao JZ, 2022, Arxiv, DOI [arXiv:2207.11938, 10.48550/arxiv.2207.11938, DOI 10.48550/ARXIV.2207.11938]
[4]  
Cao LF, 2022, AAAI CONF ARTIF INTE, P158
[5]  
Chen AP, 2022, Arxiv, DOI arXiv:2203.09517
[6]  
Chen ZQ, 2022, Arxiv, DOI arXiv:2208.00277
[7]  
Cole Forrester., 2021, P IEEECVF INT C COMP, P6088
[8]  
Deng B., 2020, JaxNeRF: an efficient JAX implementation of NeRF, P8
[9]   The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking [J].
Du, Dawei ;
Qi, Yuankai ;
Yu, Hongyang ;
Yang, Yifan ;
Duan, Kaiwen ;
Li, Guorong ;
Zhang, Weigang ;
Huang, Qingming ;
Tian, Qi .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :375-391
[10]   Plenoxels: Radiance Fields without Neural Networks [J].
Fridovich-Keil, Sara ;
Yu, Alex ;
Tancik, Matthew ;
Chen, Qinhong ;
Recht, Benjamin ;
Kanazawa, Angjoo .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :5491-5500