Exploring Quantum Simpson-Type Inequalities for Convex Functions: A Novel Investigation

被引:2
作者
Iftikhar, Sabah [1 ]
Awan, Muhammad Uzair [2 ]
Budak, Hueseyin [3 ]
机构
[1] Xiamen Univ Malaysia, Dept Math, Sepang 43900, Malaysia
[2] Govt Coll Univ, Dept Math, Faisalabad 38000, Pakistan
[3] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkiye
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 07期
关键词
Simpson's integral inequality; convex functions; quantum calculus; integral inequalities;
D O I
10.3390/sym15071312
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study seeks to derive novel quantum variations of Simpson's inequality by primarily utilizing the convexity characteristics of functions. Additionally, the study examines the credibility of the obtained results through the presentation of relevant numerical examples and graphs.
引用
收藏
页数:12
相关论文
共 50 条
[41]   NEWTON-TYPE INEQUALITIES ASSOCIATED WITH CONVEX FUNCTIONS VIA QUANTUM CALCULUS [J].
Luangboon, Waewta ;
Nonlaopon, Kamsing ;
Sarikaya, Mehmet Zeki ;
Budak, Huseyin .
MISKOLC MATHEMATICAL NOTES, 2024, 25 (01) :383-398
[42]   Two-Variable Quantum Integral Inequalities of Simpson-Type Based on Higher-Order Generalized Strongly Preinvex and Quasi-Preinvex Functions [J].
Kalsoom, Humaira ;
Rashid, Saima ;
Idrees, Muhammad ;
Chu, Yu -Ming ;
Baleanu, Dumitru .
SYMMETRY-BASEL, 2020, 12 (01)
[43]   On some new quantum midpoint-type inequalities for twice quantum differentiable convex functions [J].
Ali, Muhammad Aamir ;
Alp, Necmettin ;
Budak, Huseyin ;
Chu, Yu-Ming ;
Zhang, Zhiyue .
OPEN MATHEMATICS, 2021, 19 (01) :427-439
[44]   Simpson-like type inequalities for relative semi-(α, m)-logarithmically convex functions [J].
Zhou, Chang ;
Peng, Cheng ;
Du, Tingsong .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08) :4485-4498
[45]   A note on fractional Simpson-like type inequalities for functions whose third derivatives are convex [J].
Hezenci, Fatih ;
Budak, Huseyin .
FILOMAT, 2023, 37 (12) :3715-3724
[46]   Corrected Dual-Simpson-Type Inequalities for Differentiable Generalized Convex Functions on Fractal Set [J].
Lakhdari, Abdelghani ;
Saleh, Wedad ;
Meftah, Badreddine ;
Iqbal, Akhlad .
FRACTAL AND FRACTIONAL, 2022, 6 (12)
[47]   A Note on Fractional Simpson Type Inequalities for Twice Differentiable Functions [J].
Hezenci, Fatih .
MATHEMATICA SLOVACA, 2023, 73 (03) :675-686
[48]   Quantum Trapezium-Type Inequalities Using Generalized φ-Convex Functions [J].
Vivas-Cortez, Miguel J. ;
Kashuri, Artion ;
Liko, Rozana ;
Hernandez, Jorge E. .
AXIOMS, 2020, 9 (01)
[49]   Some Parameterized Quantum Midpoint and Quantum Trapezoid Type Inequalities for Convex Functions with Applications [J].
Asawasamrit, Suphawat ;
Ali, Muhammad Aamir ;
Ntouyas, Sotiris K. ;
Tariboon, Jessada .
ENTROPY, 2021, 23 (08)
[50]   Some parameterized Simpson's type inequalities for differentiable convex functions involving generalized fractional integrals [J].
You, Xuexiao ;
Ali, Muhammad Aamir ;
Budak, Huseyin ;
Kara, Hasan ;
Zhao, Dafang .
ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01)