Exploring Quantum Simpson-Type Inequalities for Convex Functions: A Novel Investigation

被引:2
作者
Iftikhar, Sabah [1 ]
Awan, Muhammad Uzair [2 ]
Budak, Hueseyin [3 ]
机构
[1] Xiamen Univ Malaysia, Dept Math, Sepang 43900, Malaysia
[2] Govt Coll Univ, Dept Math, Faisalabad 38000, Pakistan
[3] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkiye
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 07期
关键词
Simpson's integral inequality; convex functions; quantum calculus; integral inequalities;
D O I
10.3390/sym15071312
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study seeks to derive novel quantum variations of Simpson's inequality by primarily utilizing the convexity characteristics of functions. Additionally, the study examines the credibility of the obtained results through the presentation of relevant numerical examples and graphs.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] SIMPSON TYPE QUANTUM INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS (vol 19, pg 649, 2018)
    Alp, Necmettin
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 33 - 36
  • [22] On corrected Simpson-type inequalities via local fractional integrals
    Lakhdari, Abdelghani
    Meftah, Badreddine
    Saleh, Wedad
    GEORGIAN MATHEMATICAL JOURNAL, 2025, 32 (01) : 111 - 121
  • [23] Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications
    Thabet Abdeljawad
    Saima Rashid
    Zakia Hammouch
    İmdat İşcan
    Yu-Ming Chu
    Advances in Difference Equations, 2020
  • [24] On Some New Simpson's Formula Type Inequalities for Convex Functions in Post-Quantum Calculus
    Vivas-Cortez, Miguel J.
    Ali, Muhammad Aamir
    Qaisar, Shahid
    Sial, Ifra Bashir
    Jansem, Sinchai
    Mateen, Abdul
    SYMMETRY-BASEL, 2021, 13 (12):
  • [25] New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Budak, Huseyin
    Agarwal, Praveen
    Murtaza, Ghulam
    Chu, Yu-Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [26] New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions
    Muhammad Aamir Ali
    Mujahid Abbas
    Hüseyin Budak
    Praveen Agarwal
    Ghulam Murtaza
    Yu-Ming Chu
    Advances in Difference Equations, 2021
  • [27] Simpson's Second Type Integral Inequalities for Twice Differentiable Convex Functions
    Iftikhar, Sabah
    Uche, Ugochukwu David
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (03): : 766 - 783
  • [28] SEVERAL NEW INTEGRAL INEQUALITIES OF THE SIMPSON TYPE FOR (α, s, m)-CONVEX FUNCTIONS
    Yin, Hong-Ping
    Liu, Xi-Min
    Wang, Jing-Yu
    Qi, Feng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05): : 2896 - 2905
  • [29] On fractional Simpson type integral inequalities for co-ordinated convex functions
    Khan, Sundas
    Budak, Huseyin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [30] Weighted Simpson-like type inequalities for quasi-convex functions
    Ayed, Hamida
    Meftah, Badreddine
    JOURNAL OF APPLIED ANALYSIS, 2023, 29 (02) : 313 - 322