Tunneling via surface dislocation in W/β-Ga2O3 Schottky barrier diodes

被引:3
|
作者
Labed, Madani [1 ]
Min, Ji Young [1 ]
Slim, Amina Ben [2 ]
Sengouga, Nouredine [2 ]
Prasad, Chowdam Venkata [1 ]
Kyoung, Sinsu [3 ]
Rim, You Seung [1 ,4 ]
机构
[1] Sejong Univ, Dept Intelligent Mechatron Engn, Seoul 05006, South Korea
[2] Univ Biskra, Lab Semiconducting & Met Mat LMSM, Biskra 07000, Algeria
[3] Powercubesemi Inc, Res & Dev, Seongnam Si 13449, Gyeonggi Do, South Korea
[4] Sejong Univ, Dept Semicond Syst Engn, Seoul 05006, South Korea
基金
新加坡国家研究基金会;
关键词
beta-Ga2O3; SBD; SBD paramatters; tungsten; low temperature; tunneling via dislocation; BETA-GA2O3; DENSITY;
D O I
10.1088/1674-4926/44/7/072801
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, W/& beta;-Ga2O3 Schottky barrier diodes, prepared using a confined magnetic field-based sputtering method, were analyzed at different operation temperatures. Firstly, Schottky barrier height increased with increasing temperature from 100 to 300 K and reached 1.03 eV at room temperature. The ideality factor decreased with increasing temperature and it was higher than 2 at 100 K. This apparent high value was related to the tunneling effect. Secondly, the series and on-resistances decreased with increasing operation temperature. Finally, the interfacial dislocation was extracted from the tunneling current. A high dislocation density was found, which indicates the domination of tunneling through dislocation in the transport mechanism. These findings are evidently helpful in designing better performance devices.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes
    Yadav, Manoj K.
    Mondal, Arnab
    Kumar, Shiv
    Sharma, Satinder K.
    Bag, Ankush
    2021 IEEE 8TH WORKSHOP ON WIDE BANDGAP POWER DEVICES AND APPLICATIONS (WIPDA), 2021, : 263 - 267
  • [22] Microwave Power Rectification Using β-Ga2O3 Schottky Barrier Diodes
    Oishi, Toshiyuki
    Urata, Kosuke
    Hashikawa, Makoto
    Ajiro, Kosuke
    Oshima, Takayoshi
    IEEE ELECTRON DEVICE LETTERS, 2019, 40 (09) : 1393 - 1395
  • [23] Ga2O3 Schottky Barrier Diodes Fabricated by Using Single-Crystal β-Ga2O3 (010) Substrates
    Sasaki, Kohei
    Higashiwaki, Masataka
    Kuramata, Akito
    Masui, Takekazu
    Yamakoshi, Shigenobu
    IEEE ELECTRON DEVICE LETTERS, 2013, 34 (04) : 493 - 495
  • [24] Proton irradiation Of Ga2O3 Schottky diodes and NiO/Ga2O3 heterojunctions
    Polyakov, Alexander Y.
    Saranin, Danila S.
    Shchemerov, Ivan V.
    Vasilev, Anton A.
    Romanov, Andrei A.
    Kochkova, Anastasiia I.
    Gostischev, Pavel
    Chernykh, Alexey V.
    Alexanyan, Luiza A.
    Matros, Nikolay R.
    Lagov, Petr B.
    Doroshkevich, Aleksandr S.
    Isayev, Rafael Sh.
    Pavlov, Yu. S.
    Kislyuk, Alexander M.
    Yakimov, Eugene B.
    Pearton, Stephen J.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [25] A landscape of β-Ga2O3 Schottky power diodes
    Man Hoi Wong
    Journal of Semiconductors, 2023, (09) : 57 - 66
  • [26] A landscape of β-Ga2O3 Schottky power diodes
    Wong, Man Hoi
    JOURNAL OF SEMICONDUCTORS, 2023, 44 (09)
  • [27] Vertical β-Ga2O3 Schottky barrier diodes with trench staircase field plate
    Kumar, Sandeep
    Murakami, Hisashi
    Kumagai, Yoshinao
    Higashiwaki, Masataka
    APPLIED PHYSICS EXPRESS, 2022, 15 (05)
  • [28] Effect of Electron Irradiation and Defect Analysis of β-Ga2O3 Schottky Barrier Diodes
    Zhang, Zhengliang
    Wang, Tianqi
    Xiao, Liyi
    Liu, Chaoming
    Zhou, Jiaming
    Zhang, Yanqing
    Qi, Chunhua
    Ma, Guoliang
    Huo, Mingxue
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (03) : 1676 - 1680
  • [29] Transient characteristics of β-Ga2O3 nanomembrane Schottky barrier diodes on various substrates
    Lai, Junyu
    Seo, Jung-Hun
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (39)
  • [30] Demonstration of Large-Size Vertical Ga2O3 Schottky Barrier Diodes
    Ji, Mihee
    Taylor, Neil R.
    Kravchenko, Ivan
    Joshi, Pooran
    Aytug, Tolga
    Cao, Lei R.
    Paranthaman, M. Parans
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (01) : 41 - 44