Rigid toric matrix Schubert varieties

被引:2
作者
Portakal, Irem [1 ]
机构
[1] Tech Univ Munich, Dept Math, Munich, Germany
关键词
Matrix Schubert variety; Toric variety; Bipartite graph; Rothe diagram; Deformation; GEOMETRY;
D O I
10.1007/s10801-023-01229-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fulton proves that the matrix Schubert variety (X-pi) over bar congruent to Y-pi x C-q can be defined via certain rank conditions encoded in the Rothe diagram of pi is an element of S-N. In the case where Y-pi := TV(sigma(pi)) is toric (with respect to a (C*)(2N-1) action), we show that it can be described as a toric (edge) ideal of a bipartite graph G(pi). We characterize the lower dimensional faces of the associated so-called edge cone sigma(pi) explicitly in terms of subgraphs of G(pi) and present a combinatorial study for the first-order deformations of Y-pi. We prove that Y-pi is rigid if and only if the three-dimensional faces of sigma(pi) are all simplicial. Moreover, we reformulate this result in terms of the Rothe diagram of pi.
引用
收藏
页码:1265 / 1283
页数:19
相关论文
共 50 条
[41]   On Isotopies and Homologies of Subvarieties of Toric Varieties [J].
N. A. Bushueva .
Siberian Mathematical Journal, 2010, 51 :776-788
[42]   Syzygies, multigraded regularity and toric varieties [J].
Hering, Milena ;
Schenck, Hal ;
Smith, Gregory G. .
COMPOSITIO MATHEMATICA, 2006, 142 (06) :1499-1506
[43]   LS algebras and application to Schubert varieties [J].
R. Chirivì .
Transformation Groups, 2000, 5 :245-264
[44]   Logarithmic stable toric varieties and their moduli [J].
Ascher, Kenneth ;
Malcho, Samouil .
ALGEBRAIC GEOMETRY, 2016, 3 (03) :296-319
[45]   Derived categories of toric varieties III [J].
Kawamata Y. .
European Journal of Mathematics, 2016, 2 (1) :196-207
[46]   Families of pointed toric varieties and degenerations [J].
Sandra Di Rocco ;
Luca Schaffler .
Mathematische Zeitschrift, 2022, 301 :4119-4139
[47]   The Hartogs Extension Phenomenon in Toric Varieties [J].
Sergey Feklistov ;
Alexey Shchuplev .
The Journal of Geometric Analysis, 2021, 31 :12034-12052
[48]   On a special class of simplicial toric varieties [J].
Barile, Margherita .
JOURNAL OF ALGEBRA, 2007, 308 (01) :368-382
[49]   Maps of toric varieties in Cox coordinates [J].
Brown, Gavin ;
Buczynski, Jaroslaw .
FUNDAMENTA MATHEMATICAE, 2013, 222 (03) :213-267
[50]   Codimension theorems for complete toric varieties [J].
Cox, D ;
Dickenstein, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (11) :3153-3162