Rigid toric matrix Schubert varieties

被引:1
作者
Portakal, Irem [1 ]
机构
[1] Tech Univ Munich, Dept Math, Munich, Germany
关键词
Matrix Schubert variety; Toric variety; Bipartite graph; Rothe diagram; Deformation; GEOMETRY;
D O I
10.1007/s10801-023-01229-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fulton proves that the matrix Schubert variety (X-pi) over bar congruent to Y-pi x C-q can be defined via certain rank conditions encoded in the Rothe diagram of pi is an element of S-N. In the case where Y-pi := TV(sigma(pi)) is toric (with respect to a (C*)(2N-1) action), we show that it can be described as a toric (edge) ideal of a bipartite graph G(pi). We characterize the lower dimensional faces of the associated so-called edge cone sigma(pi) explicitly in terms of subgraphs of G(pi) and present a combinatorial study for the first-order deformations of Y-pi. We prove that Y-pi is rigid if and only if the three-dimensional faces of sigma(pi) are all simplicial. Moreover, we reformulate this result in terms of the Rothe diagram of pi.
引用
收藏
页码:1265 / 1283
页数:19
相关论文
共 50 条
  • [21] Derivation algebras of toric varieties
    Campillo, A
    Grabowski, J
    Müller, G
    COMPOSITIO MATHEMATICA, 1999, 116 (02) : 119 - 132
  • [22] ADDITIVE ACTIONS ON TORIC VARIETIES
    Arzhantsev, Ivan
    Romaskevich, Elena
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (05) : 1865 - 1879
  • [23] Toric Varieties of Schroder Type
    Huh, JiSun
    Park, Seonjeong
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 317 (01) : 161 - 177
  • [24] Frobenius splittings of toric varieties
    Payne, Sam
    ALGEBRA & NUMBER THEORY, 2009, 3 (01) : 107 - 119
  • [25] Automorphisms of Nonnormal Toric Varieties
    I. A. Boldyrev
    S. A. Gaifullin
    Mathematical Notes, 2021, 110 : 872 - 886
  • [26] Toric varieties and modular forms
    Lev A. Borisov
    Paul E. Gunnells
    Inventiones mathematicae, 2001, 144 : 297 - 325
  • [27] Toric varieties and modular forms
    Borisov, LA
    Gunnells, PE
    INVENTIONES MATHEMATICAE, 2001, 144 (02) : 297 - 325
  • [28] Selected topics on toric varieties
    Michalek, Mateusz
    50TH ANNIVERSARY OF GROEBNER BASES, 2018, 77 : 207 - 252
  • [29] Flux compactifications on toric varieties
    Larfors, Magdalena
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2011, 59 (7-8): : 730 - 733
  • [30] Tilting sheaves on toric varieties
    L. Costa
    R. M. Miró-Roig
    Mathematische Zeitschrift, 2004, 248 : 849 - 865