Rigid toric matrix Schubert varieties

被引:2
作者
Portakal, Irem [1 ]
机构
[1] Tech Univ Munich, Dept Math, Munich, Germany
关键词
Matrix Schubert variety; Toric variety; Bipartite graph; Rothe diagram; Deformation; GEOMETRY;
D O I
10.1007/s10801-023-01229-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fulton proves that the matrix Schubert variety (X-pi) over bar congruent to Y-pi x C-q can be defined via certain rank conditions encoded in the Rothe diagram of pi is an element of S-N. In the case where Y-pi := TV(sigma(pi)) is toric (with respect to a (C*)(2N-1) action), we show that it can be described as a toric (edge) ideal of a bipartite graph G(pi). We characterize the lower dimensional faces of the associated so-called edge cone sigma(pi) explicitly in terms of subgraphs of G(pi) and present a combinatorial study for the first-order deformations of Y-pi. We prove that Y-pi is rigid if and only if the three-dimensional faces of sigma(pi) are all simplicial. Moreover, we reformulate this result in terms of the Rothe diagram of pi.
引用
收藏
页码:1265 / 1283
页数:19
相关论文
共 50 条
[21]   Selected topics on toric varieties [J].
Michalek, Mateusz .
50TH ANNIVERSARY OF GROEBNER BASES, 2018, 77 :207-252
[22]   Toric varieties and modular forms [J].
Borisov, LA ;
Gunnells, PE .
INVENTIONES MATHEMATICAE, 2001, 144 (02) :297-325
[23]   Toric varieties and modular forms [J].
Lev A. Borisov ;
Paul E. Gunnells .
Inventiones mathematicae, 2001, 144 :297-325
[24]   Automorphisms of Nonnormal Toric Varieties [J].
I. A. Boldyrev ;
S. A. Gaifullin .
Mathematical Notes, 2021, 110 :872-886
[25]   Frobenius splittings of toric varieties [J].
Payne, Sam .
ALGEBRA & NUMBER THEORY, 2009, 3 (01) :107-119
[26]   Heights of hypersurfaces in toric varieties [J].
Gualdi, Roberto .
ALGEBRA & NUMBER THEORY, 2018, 12 (10) :2403-2443
[27]   Toric Varieties of Schroder Type [J].
Huh, JiSun ;
Park, Seonjeong .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 317 (01) :161-177
[28]   ADDITIVE ACTIONS ON TORIC VARIETIES [J].
Arzhantsev, Ivan ;
Romaskevich, Elena .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (05) :1865-1879
[29]   Derivation algebras of toric varieties [J].
Campillo, A ;
Grabowski, J ;
Müller, G .
COMPOSITIO MATHEMATICA, 1999, 116 (02) :119-132
[30]   On the integral cohomology of toric varieties [J].
Kim, Jin Hong .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (02)